中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脱碳对2100 MPa级V微合金化桥梁缆索钢丝力学性能的影响

苏启豪 亓海全 李新茹 李腊梅 杨子康 谢盈盈 姚小凤 周忠成

苏启豪, 亓海全, 李新茹, 李腊梅, 杨子康, 谢盈盈, 姚小凤, 周忠成. 脱碳对2100 MPa级V微合金化桥梁缆索钢丝力学性能的影响[J]. 钢铁钒钛, 2025, 46(6): 157-163. doi: 10.7513/j.issn.1004-7638.2025.06.019
引用本文: 苏启豪, 亓海全, 李新茹, 李腊梅, 杨子康, 谢盈盈, 姚小凤, 周忠成. 脱碳对2100 MPa级V微合金化桥梁缆索钢丝力学性能的影响[J]. 钢铁钒钛, 2025, 46(6): 157-163. doi: 10.7513/j.issn.1004-7638.2025.06.019
SU Qihao, QI Haiquan, LI Xinru, LI Lamei, YANG Zikang, XIE Yingying, YAO Xiaofeng, ZHOU Zhongcheng. The influence of decarburization on the mechanical properties of 2100 MPa grade V microalloyed bridge cable steel wire[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 157-163. doi: 10.7513/j.issn.1004-7638.2025.06.019
Citation: SU Qihao, QI Haiquan, LI Xinru, LI Lamei, YANG Zikang, XIE Yingying, YAO Xiaofeng, ZHOU Zhongcheng. The influence of decarburization on the mechanical properties of 2100 MPa grade V microalloyed bridge cable steel wire[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 157-163. doi: 10.7513/j.issn.1004-7638.2025.06.019

脱碳对2100 MPa级V微合金化桥梁缆索钢丝力学性能的影响

doi: 10.7513/j.issn.1004-7638.2025.06.019
基金项目: 广西科技计划项目(桂科AD25069100)。
详细信息
    作者简介:

    苏启豪,2001年出生,男,河北邢台人,硕士研究生,主要从事先进钢铁材料研究,E-mail:jinzhikuye22333@163.com

    通讯作者:

    亓海全,1981年出生,男,山东莱芜人,副教授,主要从事钢铁材料与热处理研究,E-mail:alexander_qi@163.com

  • 中图分类号: TG142.1

The influence of decarburization on the mechanical properties of 2100 MPa grade V microalloyed bridge cable steel wire

  • 摘要: 为了量化脱碳层对超高强缆索钢丝力学性能的影响,系统研究了2100 MPa级V微合金化镀锌铝缆索钢丝的径向硬度分布、脱碳层深度及逐层剥离脱碳层后钢丝的力学性能。结果表明:①钢丝基体的径向硬度由表及里呈规律性提高,硬度(HV)最外层为601,心部为678,硬度数据证实钢丝的实际脱碳层深度可达(150±10) μm;②钢丝镀锌铝层厚度约为30 μm,镀锌铝层降低钢丝强度为11.17 MPa,对钢丝强度影响较小;③逐层剥离脱碳层后,钢丝基体的强度由2134.04 MPa增至2225.97 MPa,脱碳层使钢丝强度降低91.93 MPa,剥离140 μm后强度趋于稳定。由数据可知,脱碳层明显降低了缆索钢丝的整体强度,故严格控制盘条脱碳是开发超高强缆索钢丝的重要环节。
  • 图  1  拉伸试样实物

    Figure  1.  Physical drawing of the tensile specimen

    图  2  2100 MPa级钢丝显微组织

    (a)(a1)(b)(b1)光学显微组织;(c)(c1)(d)(d1)SEM显微组织; 边部:(a)(c)横截面;(a1)(c1)纵截面;心部:(b)(d)横截面;(b1)(d1)纵截面

    Figure  2.  Optical microstructure of 2100 MPa grade steel wire

    图  3  2100 MPa级钢丝镀层附近EDS成分分析

    (a)钢丝镀层附近SEM显微组织;(b)EDS成分分析结果

    Figure  3.  EDS analysis on the surface near the coating of 2100 MPa grade steel wire

    图  4  2100 MPa钢丝显微硬度分布

    (a)钢丝表面、1/2半径处、心部显微硬度分布;(b)钢丝脱碳部位显微硬度分布

    Figure  4.  Microhardness distribution of 2100 MPa steel wire

    图  5  拉伸试样断口形貌

    (a)(a1)(a2)(a3)试样A;(b)(b1)(b2)(b3)试样B;(c)(c1)(c2)(c3)试样C;(d)(d1)(d2)(d3)试样D;(e)(e1)(e2)(e3)试样E;(f)(f1)(f2)(f3)试样F

    Figure  5.  Fracture surface morphology of tensile specimen

    表  1  钢丝的化学成分

    Table  1.   Chemical composition of steel wire %

    CSiMnCrVAlPSFe
    0.981.240.730.310.050.020.0090.002Bal.
    下载: 导出CSV

    表  2  不同剥层深度下钢丝的力学性能

    Table  2.   Mechanical properties of steel wire at different delamination depths

    Specimen
    number
    Delamination
    depth /μm
    Tensile strength
    /MPa
    Percentage
    elongation /%
    Reduction of
    area /%
    A02122.879.639.0
    B302134.049.539.4
    C702195.819.035.2
    D1402223.728.334.6
    E2102225.978.334.6
    F2802220.757.534.2
    下载: 导出CSV
  • [1] HU L, WANG L, MA H. Study on hot-rolled steel wire rod for ultra-high strength PC steel wire and strand[J]. Iron Steel Vanadium Titanium, 2016, 37(1): 142-147. (胡磊, 王雷, 麻晗. 超高强度预应力钢丝及钢绞线用盘条的开发研究[J]. 钢铁钒钛, 2016, 37(1): 142-147. doi: 10.7513/j.issn.1004-7638.2016.01.028

    HU L, WANG L, MA H. Study on hot-rolled steel wire rod for ultra-high strength PC steel wire and strand[J]. Iron Steel Vanadium Titanium, 2016, 37(1): 142-147. doi: 10.7513/j.issn.1004-7638.2016.01.028
    [2] BORCHERS C, KIRCHHHEIM R. Cold-drawn pearlitic steel wires[J]. Progress in Materials Science, 2016, 82: 405-444. doi: 10.1016/j.pmatsci.2016.06.001
    [3] FENG L L, WU K M, LU X Y, et al. Research status and development tendency of ultra-high strength steel wire for bridge cables[J]. Materials China, 2020, 39(5): 395-403. (冯路路, 吴开明, 鲁修宇, 等. 桥梁缆索用超高强度钢丝的研究现状及发展趋势[J]. 中国材料进展, 2020, 39(5): 395-403. doi: 10.7502/j.issn.1674-3962.201904017

    FENG L L, WU K M, LU X Y, et al. Research status and development tendency of ultra-high strength steel wire for bridge cables[J]. Materials China, 2020, 39(5): 395-403. doi: 10.7502/j.issn.1674-3962.201904017
    [4] WANG H B, FU C, DI Z W, et al. Research status of microstructure and properties control of ultra-high stength prestressed steel strand above 2000 MPa grade[J]. China Metallurgy, 2024, 34(4): 24-38. (王海宾, 傅超, 狄增文, 等. 2000 MPa级以上超高强预应力钢绞线组织性能调控研究现状[J]. 中国冶金, 2024, 34(4): 24-38. doi: 10.13228/j.boyuan.issn1006-9356.20230703

    WANG H B, FU C, DI Z W, et al. Research status of microstructure and properties control of ultra-high stength prestressed steel strand above 2000 MPa grade[J]. China Metallurgy, 2024, 34(4): 24-38. doi: 10.13228/j.boyuan.issn1006-9356.20230703
    [5] SHEN J L, QIN Z G, XIA Y H, et al. Application of VN alloy in high-carbon wire and rod of WSWRH82B[J]. Iron Steel Vanadium Titanium, 2009, 30(4): 21-26. (沈金龙, 覃之光, 夏艳花, 等. 钒氮合金在高碳钢WSWRH82B中的应用[J]. 钢铁钒钛, 2009, 30(4): 21-26.

    SHEN J L, QIN Z G, XIA Y H, et al. Application of VN alloy in high-carbon wire and rod of WSWRH82B[J]. Iron Steel Vanadium Titanium, 2009, 30(4): 21-26.
    [6] MAEJIMA T, YONEMURA M, KAORI K, et al. Lattice strain and strength evaluation on V microalloyed pearlite steel[J]. ISIJ International, 2020, 60(8): 1810-1818. doi: 10.2355/isijinternational.ISIJINT-2019-708
    [7] DENG T W, CUI F, TANG Z Y, et al. Effect of vanadium on phase transformation, cold drawing, and torsion of high-carbon steel[J]. Journal of Materials Engineering and Performance, 2025, 34: 17235-17244. doi: 10.1007/s11665-024-10419-4
    [8] MAKII K, YAGUCHI H, KAISO M, et al. Influence of Si on nano sub-structure of cementite lamellae in pearlitic steel wires[J]. Scripta Materialia, 1997, 37(11): 1753-1759. doi: 10.1016/S1359-6462(97)00326-6
    [9] JOUNG S, NAM W. Effects of alloying elements, Si and Cr, on aging and delamination behaviors in cold-drawn and subsequently annealed hyper-eutectoid steel wires[J]. Metals and Materials International, 2018, 25: 34-44.
    [10] ZHANG C L, LIU Y Z, ZHOU L Y, et al. Forming condition and control strategy of ferrite decarburization in 60Si2MnA spring steel wires for automotive suspensions[J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19: 116-121.
    [11] SHI Y, ZHAO M T, LU J H, et al. Analysis and improvement of full-decarburized layer of SCM435 hot rolled wire[J/OL]. Hot Working Technology, 1-4[2025-12-04]. https://doi.org/10.14158/j.cnki.1001-3814.20222663. (史杨, 赵满堂, 陆继欢, 等. SCM435热轧盘条全脱碳层原因分析及改进[J/OL]. 热加工工艺, 1-4[2025-12-04]. https://doi.org/10.14158/j.cnki.1001-3814.20222663.

    SHI Y, ZHAO M T, LU J H, et al. Analysis and improvement of full-decarburized layer of SCM435 hot rolled wire[J/OL]. Hot Working Technology, 1-4[2025-12-04]. https://doi.org/10.14158/j.cnki.1001-3814.20222663.
    [12] LI M N, DU Z Z, WANG Q J, et al. Application status of micro-alloying and controlled cooling in high carbon steel wire rod[J]. Hot Working Technology, 2016, 45(1): 6-10. (李敏娜, 杜忠泽, 王庆娟, 等. 微合金化及控制冷却在高碳钢盘条中的应用现状[J]. 热加工工艺, 2016, 45(1): 6-10. doi: 10.14158/j.cnki.1001-3814.2016.01.002

    LI M N, DU Z Z, WANG Q J, et al. Application status of micro-alloying and controlled cooling in high carbon steel wire rod[J]. Hot Working Technology, 2016, 45(1): 6-10. doi: 10.14158/j.cnki.1001-3814.2016.01.002
    [13] JIA L, HU C Y, ZHU X X, et al. Effect of cold drawing on microstructure and mechanical properties of Nb microalloyed steel wire for bridge cable[J]. Journal of Iron and Steel Research, 2024, 36(7): 947-956. (贾力, 胡丞杨, 朱晓雄, 等. 冷拉拔对Nb微合金化桥梁缆索用钢丝显微组织和力学性能的影响[J]. 钢铁研究学报, 2024, 36(7): 947-956.

    JIA L, HU C Y, ZHU X X, et al. Effect of cold drawing on microstructure and mechanical properties of Nb microalloyed steel wire for bridge cable[J]. Journal of Iron and Steel Research, 2024, 36(7): 947-956.
    [14] YANG X, BAO S Q, KANG X L, et al. Microstructure evolution and strengthening mechanism of 2100 MPa grade cold-drawn steel wires for bridge cables[J]. Special Steel, 2025, 46(1): 92-98. (杨旭, 鲍思前, 康筱龙, 等. 2100 MPa级桥梁缆索用冷拔钢丝微观组织演变及强化机制[J]. 特殊钢, 2025, 46(1): 92-98. doi: 10.20057/j.1003-8620.2024-00168

    YANG X, BAO S Q, KANG X L, et al. Microstructure evolution and strengthening mechanism of 2100 MPa grade cold-drawn steel wires for bridge cables[J]. Special Steel, 2025, 46(1): 92-98. doi: 10.20057/j.1003-8620.2024-00168
    [15] WANG L F, ZHOU L C, CHEN H Q, et al. Manufacturing technology, microstructural and mechanical properties of Ø5.35 mm-2100 MPa grade hot galvalume steel wire for bridge cable[J]. Iron & Steel, 2019, 54(2): 90-96. (王林烽, 周立初, 陈华青, 等. Ø5.35 mm-2100 MPa桥梁用锌铝钢丝的工艺与组织性能[J]. 钢铁, 2019, 54(2): 90-96. doi: 10.13228/j.boyuan.issn0449-749x.20180288

    WANG L F, ZHOU L C, CHEN H Q, et al. Manufacturing technology, microstructural and mechanical properties of Ø5.35 mm-2100 MPa grade hot galvalume steel wire for bridge cable[J]. Iron & Steel, 2019, 54(2): 90-96. doi: 10.13228/j.boyuan.issn0449-749x.20180288
    [16] QU X, BAO S Q, ZHAO G, et al. Evolution of microstructure and properties for high carbon steel wire during drawing[J]. Journal of Materials Science and Engineering, 2021, 39(6): 937-942. (瞿熙, 鲍思前, 赵刚, 等. 高碳钢丝拉拔过程中的组织性能演变[J]. 材料科学与工程学报, 2021, 39(6): 937-942. doi: 10.14136/j.cnki.issn1673-2812.2021.06.010

    QU X, BAO S Q, ZHAO G, et al. Evolution of microstructure and properties for high carbon steel wire during drawing[J]. Journal of Materials Science and Engineering, 2021, 39(6): 937-942. doi: 10.14136/j.cnki.issn1673-2812.2021.06.010
    [17] WANG M, WANG L P, WANG L F, et al. The effect of sorbite colony morphology on the mechanical properties of cord steel 82A[J]. Mining and Metallurgy, 2013, 22(S1): 74-78. (王猛, 王丽萍, 王立峰, 等. 索氏体团形态对帘线钢82A力学性能的影响[J]. 矿冶, 2013, 22(S1): 74-78. doi: 10.3969/j.issn.1005-7854.2013.z1.018

    WANG M, WANG L P, WANG L F, et al. The effect of sorbite colony morphology on the mechanical properties of cord steel 82A[J]. Mining and Metallurgy, 2013, 22(S1): 74-78. doi: 10.3969/j.issn.1005-7854.2013.z1.018
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  30
  • HTML全文浏览量:  17
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-15
  • 录用日期:  2025-12-05
  • 修回日期:  2025-12-04
  • 网络出版日期:  2025-12-31
  • 刊出日期:  2025-12-31

目录

    /

    返回文章
    返回