The influence of decarburization on the mechanical properties of 2100 MPa grade V microalloyed bridge cable steel wire
-
摘要: 为了量化脱碳层对超高强缆索钢丝力学性能的影响,系统研究了
2100 MPa级V微合金化镀锌铝缆索钢丝的径向硬度分布、脱碳层深度及逐层剥离脱碳层后钢丝的力学性能。结果表明:①钢丝基体的径向硬度由表及里呈规律性提高,硬度(HV)最外层为601,心部为678,硬度数据证实钢丝的实际脱碳层深度可达(150±10) μm;②钢丝镀锌铝层厚度约为30 μm,镀锌铝层降低钢丝强度为11.17 MPa,对钢丝强度影响较小;③逐层剥离脱碳层后,钢丝基体的强度由2134.04 MPa增至2225.97 MPa,脱碳层使钢丝强度降低91.93 MPa,剥离140 μm后强度趋于稳定。由数据可知,脱碳层明显降低了缆索钢丝的整体强度,故严格控制盘条脱碳是开发超高强缆索钢丝的重要环节。Abstract: To quantify the influence of decarburization layers on the mechanical properties of ultra-high strength cable steel wires, in this paper the radial hardness distribution, decarburization layer depth and mechanical properties of2100 MPa grade V microalloyed zinc-aluminum cable steel wires after layer-by-layer stripping of decarburization layers had been systematically studied. The results show that the radial hardness of the steel wire substrate increases regularly from the surface to the core, with the hardness (HV) being 601 at the outermost layer and 678 at the core. The hardness data confirm that the actual decarburization layer depth of the steel wire can reach (150±10) μm. The thickness of achieved zinc-aluminum coating on the steel wire is approximately 30 μm, which reduces the steel wire's strength by 11.17 MPa, indicating a minor impact on the steel wire's strength. After the layer-by-layer removal of the decarburized layer, the strength of the steel wire substrate increases from2134.04 MPa to2225.97 MPa. The decarburized layer reduces the steel wire's strength by 91.93 MPa, and the strength tends to stabilize after removing a 140 μm layer. It can be seen from the data that the decarburization layer significantly reduces the overall strength of the cable steel wire. Therefore, well controlling the decarburization of the wire rods is an important factor in the development of ultra-high strength cable steel wire.-
Key words:
- cable steel wire /
- decarburization /
- vanadium /
- mechanical properties /
- hardness distribution
-
表 1 钢丝的化学成分
Table 1. Chemical composition of steel wire
% C Si Mn Cr V Al P S Fe 0.98 1.24 0.73 0.31 0.05 0.02 0.009 0.002 Bal. 表 2 不同剥层深度下钢丝的力学性能
Table 2. Mechanical properties of steel wire at different delamination depths
Specimen
numberDelamination
depth /μmTensile strength
/MPaPercentage
elongation /%Reduction of
area /%A 0 2122.87 9.6 39.0 B 30 2134.04 9.5 39.4 C 70 2195.81 9.0 35.2 D 140 2223.72 8.3 34.6 E 210 2225.97 8.3 34.6 F 280 2220.75 7.5 34.2 -
[1] HU L, WANG L, MA H. Study on hot-rolled steel wire rod for ultra-high strength PC steel wire and strand[J]. Iron Steel Vanadium Titanium, 2016, 37(1): 142-147. (胡磊, 王雷, 麻晗. 超高强度预应力钢丝及钢绞线用盘条的开发研究[J]. 钢铁钒钛, 2016, 37(1): 142-147. doi: 10.7513/j.issn.1004-7638.2016.01.028HU L, WANG L, MA H. Study on hot-rolled steel wire rod for ultra-high strength PC steel wire and strand[J]. Iron Steel Vanadium Titanium, 2016, 37(1): 142-147. doi: 10.7513/j.issn.1004-7638.2016.01.028 [2] BORCHERS C, KIRCHHHEIM R. Cold-drawn pearlitic steel wires[J]. Progress in Materials Science, 2016, 82: 405-444. doi: 10.1016/j.pmatsci.2016.06.001 [3] FENG L L, WU K M, LU X Y, et al. Research status and development tendency of ultra-high strength steel wire for bridge cables[J]. Materials China, 2020, 39(5): 395-403. (冯路路, 吴开明, 鲁修宇, 等. 桥梁缆索用超高强度钢丝的研究现状及发展趋势[J]. 中国材料进展, 2020, 39(5): 395-403. doi: 10.7502/j.issn.1674-3962.201904017FENG L L, WU K M, LU X Y, et al. Research status and development tendency of ultra-high strength steel wire for bridge cables[J]. Materials China, 2020, 39(5): 395-403. doi: 10.7502/j.issn.1674-3962.201904017 [4] WANG H B, FU C, DI Z W, et al. Research status of microstructure and properties control of ultra-high stength prestressed steel strand above 2000 MPa grade[J]. China Metallurgy, 2024, 34(4): 24-38. (王海宾, 傅超, 狄增文, 等. 2000 MPa级以上超高强预应力钢绞线组织性能调控研究现状[J]. 中国冶金, 2024, 34(4): 24-38. doi: 10.13228/j.boyuan.issn1006-9356.20230703WANG H B, FU C, DI Z W, et al. Research status of microstructure and properties control of ultra-high stength prestressed steel strand above 2000 MPa grade[J]. China Metallurgy, 2024, 34(4): 24-38. doi: 10.13228/j.boyuan.issn1006-9356.20230703 [5] SHEN J L, QIN Z G, XIA Y H, et al. Application of VN alloy in high-carbon wire and rod of WSWRH82B[J]. Iron Steel Vanadium Titanium, 2009, 30(4): 21-26. (沈金龙, 覃之光, 夏艳花, 等. 钒氮合金在高碳钢WSWRH82B中的应用[J]. 钢铁钒钛, 2009, 30(4): 21-26.SHEN J L, QIN Z G, XIA Y H, et al. Application of VN alloy in high-carbon wire and rod of WSWRH82B[J]. Iron Steel Vanadium Titanium, 2009, 30(4): 21-26. [6] MAEJIMA T, YONEMURA M, KAORI K, et al. Lattice strain and strength evaluation on V microalloyed pearlite steel[J]. ISIJ International, 2020, 60(8): 1810-1818. doi: 10.2355/isijinternational.ISIJINT-2019-708 [7] DENG T W, CUI F, TANG Z Y, et al. Effect of vanadium on phase transformation, cold drawing, and torsion of high-carbon steel[J]. Journal of Materials Engineering and Performance, 2025, 34: 17235-17244. doi: 10.1007/s11665-024-10419-4 [8] MAKII K, YAGUCHI H, KAISO M, et al. Influence of Si on nano sub-structure of cementite lamellae in pearlitic steel wires[J]. Scripta Materialia, 1997, 37(11): 1753-1759. doi: 10.1016/S1359-6462(97)00326-6 [9] JOUNG S, NAM W. Effects of alloying elements, Si and Cr, on aging and delamination behaviors in cold-drawn and subsequently annealed hyper-eutectoid steel wires[J]. Metals and Materials International, 2018, 25: 34-44. [10] ZHANG C L, LIU Y Z, ZHOU L Y, et al. Forming condition and control strategy of ferrite decarburization in 60Si2MnA spring steel wires for automotive suspensions[J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19: 116-121. [11] SHI Y, ZHAO M T, LU J H, et al. Analysis and improvement of full-decarburized layer of SCM435 hot rolled wire[J/OL]. Hot Working Technology, 1-4[2025-12-04]. https://doi.org/10.14158/j.cnki.1001-3814.20222663. (史杨, 赵满堂, 陆继欢, 等. SCM435热轧盘条全脱碳层原因分析及改进[J/OL]. 热加工工艺, 1-4[2025-12-04]. https://doi.org/10.14158/j.cnki.1001-3814.20222663.SHI Y, ZHAO M T, LU J H, et al. Analysis and improvement of full-decarburized layer of SCM435 hot rolled wire[J/OL]. Hot Working Technology, 1-4[2025-12-04]. https://doi.org/10.14158/j.cnki.1001-3814.20222663. [12] LI M N, DU Z Z, WANG Q J, et al. Application status of micro-alloying and controlled cooling in high carbon steel wire rod[J]. Hot Working Technology, 2016, 45(1): 6-10. (李敏娜, 杜忠泽, 王庆娟, 等. 微合金化及控制冷却在高碳钢盘条中的应用现状[J]. 热加工工艺, 2016, 45(1): 6-10. doi: 10.14158/j.cnki.1001-3814.2016.01.002LI M N, DU Z Z, WANG Q J, et al. Application status of micro-alloying and controlled cooling in high carbon steel wire rod[J]. Hot Working Technology, 2016, 45(1): 6-10. doi: 10.14158/j.cnki.1001-3814.2016.01.002 [13] JIA L, HU C Y, ZHU X X, et al. Effect of cold drawing on microstructure and mechanical properties of Nb microalloyed steel wire for bridge cable[J]. Journal of Iron and Steel Research, 2024, 36(7): 947-956. (贾力, 胡丞杨, 朱晓雄, 等. 冷拉拔对Nb微合金化桥梁缆索用钢丝显微组织和力学性能的影响[J]. 钢铁研究学报, 2024, 36(7): 947-956.JIA L, HU C Y, ZHU X X, et al. Effect of cold drawing on microstructure and mechanical properties of Nb microalloyed steel wire for bridge cable[J]. Journal of Iron and Steel Research, 2024, 36(7): 947-956. [14] YANG X, BAO S Q, KANG X L, et al. Microstructure evolution and strengthening mechanism of 2100 MPa grade cold-drawn steel wires for bridge cables[J]. Special Steel, 2025, 46(1): 92-98. (杨旭, 鲍思前, 康筱龙, 等. 2100 MPa级桥梁缆索用冷拔钢丝微观组织演变及强化机制[J]. 特殊钢, 2025, 46(1): 92-98. doi: 10.20057/j.1003-8620.2024-00168YANG X, BAO S Q, KANG X L, et al. Microstructure evolution and strengthening mechanism of 2100 MPa grade cold-drawn steel wires for bridge cables[J]. Special Steel, 2025, 46(1): 92-98. doi: 10.20057/j.1003-8620.2024-00168 [15] WANG L F, ZHOU L C, CHEN H Q, et al. Manufacturing technology, microstructural and mechanical properties of Ø5.35 mm-2100 MPa grade hot galvalume steel wire for bridge cable[J]. Iron & Steel, 2019, 54(2): 90-96. (王林烽, 周立初, 陈华青, 等. Ø5.35 mm-2100 MPa桥梁用锌铝钢丝的工艺与组织性能[J]. 钢铁, 2019, 54(2): 90-96. doi: 10.13228/j.boyuan.issn0449-749x.20180288WANG L F, ZHOU L C, CHEN H Q, et al. Manufacturing technology, microstructural and mechanical properties of Ø5.35 mm-2100 MPa grade hot galvalume steel wire for bridge cable[J]. Iron & Steel, 2019, 54(2): 90-96. doi: 10.13228/j.boyuan.issn0449-749x.20180288 [16] QU X, BAO S Q, ZHAO G, et al. Evolution of microstructure and properties for high carbon steel wire during drawing[J]. Journal of Materials Science and Engineering, 2021, 39(6): 937-942. (瞿熙, 鲍思前, 赵刚, 等. 高碳钢丝拉拔过程中的组织性能演变[J]. 材料科学与工程学报, 2021, 39(6): 937-942. doi: 10.14136/j.cnki.issn1673-2812.2021.06.010QU X, BAO S Q, ZHAO G, et al. Evolution of microstructure and properties for high carbon steel wire during drawing[J]. Journal of Materials Science and Engineering, 2021, 39(6): 937-942. doi: 10.14136/j.cnki.issn1673-2812.2021.06.010 [17] WANG M, WANG L P, WANG L F, et al. The effect of sorbite colony morphology on the mechanical properties of cord steel 82A[J]. Mining and Metallurgy, 2013, 22(S1): 74-78. (王猛, 王丽萍, 王立峰, 等. 索氏体团形态对帘线钢82A力学性能的影响[J]. 矿冶, 2013, 22(S1): 74-78. doi: 10.3969/j.issn.1005-7854.2013.z1.018WANG M, WANG L P, WANG L F, et al. The effect of sorbite colony morphology on the mechanical properties of cord steel 82A[J]. Mining and Metallurgy, 2013, 22(S1): 74-78. doi: 10.3969/j.issn.1005-7854.2013.z1.018 -
下载: