The influence of sub-temperature heating on the quenching microstructure and mechanical properties of 22MnB5 steel
-
摘要: 通过设计不同加热时间和保温时间的热处理制度,系统研究了680~930 ℃不同温度对22MnB5钢淬火组织与力学性能的影响。结果表明,在低温区(680~700 ℃)长时间受热会导致材料软化,高温区(850~930 ℃)长时间受热对力学性能提高有限;而在亚温区(720~820 ℃)长时间受热时,力学性能显著提高。尤其是在820 ℃加热20 min后淬火,抗拉强度和屈服强度分别达到
1589 MPa和1078 MPa,较原始状态分别提升151.02%和132.82%。研究表明,通过优化亚温区加热制度,22MnB5钢可以在低于现有工艺温度下获得1500 MPa级别的抗拉强度,为解决现有热成形工艺问题提供了新途径。Abstract: The effect of different temperatures on the quenching microstructure and mechanical properties of 22MnB5 steel in the range of 680-930 ℃ were systematically studied by designing heat treatment processes with different heating temperatures and holding times. The results show that prolonged heating in the low-temperature zone (680-700 ℃) leads to material softening, and prolonged heating in the high-temperature zone (850-930 ℃) has limited improvement in mechanical properties. However, prolonged heating in the sub-temperature temperatures zone (720-820 ℃) results in a significant improvement in the mechanical properties. Particularly, the tensile and yield strengths reached 1 589 MPa and1078 MPa after quenching at 820 ℃ for 20 min, which were 151.02% and 132.82% higher than the initial state, respectively. The study shows that by optimizing the sub-temperature heating process, the tensile strength of 22MnB5 steel can be obtained at a level of 1500 MPa at a lower temperature than the existing processes, which provides a new approach to solving the problem in the existing hot forming technologies. -
表 1 原始22MnB5钢的主要化学成分
Table 1. The main chemical composition of as-received 22MnB5 steel
% C Si Mn Al Ti B V Nb Fe 0.18 0.21 1.279 0.06 0.037 0.0059 0.0015 0.0036 bal 表 2 原始22MnB5钢的力学性能
Table 2. Mechanical properties of as-received 22MnB5 steel
RP0.2/ MPa Rm/ MPa Elongation/% HV 463 633 33.65 182 表 3 22MnB5钢在不同热处理下大小角度晶界占比及平均晶粒尺寸统计结果
Table 3. Statistical results of the percentage of low-angle and high-angle grain boundaries and average grain size of 22MnB5 steel under different heat treatments
加热温度/℃ 保温时间/min LAGB/% HAGB/% 平均晶粒尺寸/μm 原始钢板 8.58 91.42 0.440 760 20 57.83 42.17 0.355 820 20 59.32 40.68 0.371 -
[1] LEWIS G M, BUCHANAN C A, JHAVERI K D, et al. Green principles for vehicle lightweighting[J]. Environmental Science & Technology, 2019, 53(8): 4063-4077. [2] NINA B, DRAGAN A, NENAD G, et al. Lightweight materials for automobiles[J]. IOP Conference Series: Materials Science and Engineering, 2022, 1271(1): 012010. doi: 10.1088/1757-899X/1271/1/012010 [3] HAN Y, LIU H S, XIAO B L. The current situation and development trend of the development and application of automotive steel in China[J]. Steel Rolling, 2024, 41(5): 108-120. (韩 赟, 刘华赛, 肖宝亮. 我国汽车用钢开发应用现状及发展趋势[J]. 轧钢, 2024, 41(5): 108-120.HAN Y, LIU H S, XIAO B L. The current situation and development trend of the development and application of automotive steel in China[J]. Steel Rolling, 2024, 41(5): 108-120. [4] TANG Y S, SI Y, XU Z M, et al. Application and research progress of ultra-high strength steel in automotive lightweighting[J]. Heat Treatment of Metals, 2023, 48(10): 247-254. (唐远寿, 司 宇, 徐正萌, 等. 超高强度钢在汽车轻量化中的应用及研究进展[J]. 金属热处理, 2023, 48(10): 247-254.TANG Y S, SI Y, XU Z M, et al. Application and research progress of ultra-high strength steel in automotive lightweighting[J]. Heat Treatment of Metals, 2023, 48(10): 247-254. [5] NIE P L. Research on temperature field and microstructure and properties of 22MnB5 variable thickness high strength steel plate during hot stamping forming[D]. Hebei: Yanshan University, 2023. (聂鹏龙. 22MnB5变厚度高强钢板热冲压成形温度场及组织性能研究[D]. 河北: 燕山大学, 2023.NIE P L. Research on temperature field and microstructure and properties of 22MnB5 variable thickness high strength steel plate during hot stamping forming[D]. Hebei: Yanshan University, 2023. [6] TONG C, RONG Q, YARDLEY V A, et al. New developments and future trends in low-temperature hot stamping technologies: A Review[J]. Metals, 2020, 10(12): 1652. doi: 10.3390/met10121652 [7] HE W, YANG B, ZHANG X, et al. Investigation into the hot-forming limit for 22MnB5 hot-forming steel under a stamping process[J]. Metals, 2024, 14(5): 561. doi: 10.3390/met14050561 [8] WANG H L, YUE C X, ZHANG Z J, et al. Development and application of 22MnB5 ultra-high strength hot stamping steel[J]. Journal of Plasticity Engineering, 2024, 31(1): 195-203. (王欢龙, 岳重祥, 张志建, 等. 22MnB5超高强度热冲压成形钢的开发及应用[J]. 塑性工程学报, 2024, 31(1): 195-203.WANG H L, YUE C X, ZHANG Z J, et al. Development and application of 22MnB5 ultra-high strength hot stamping steel[J]. Journal of Plasticity Engineering, 2024, 31(1): 195-203. [9] ZHU X, WANG Z T, LIN T, et al. Research on microstructure and mechanical properties of hot stamping 22MnB5 Boron steel plate[J]. Journal of ShenYang Ligong University, 2015, 34(6): 15-19. (祝 哮, 王忠堂, 林 涛, 等. 22MnB5硼钢板热冲压成形组织及力学性能研究[J]. 沈阳理工大学学报, 2015, 34(6): 15-19.ZHU X, WANG Z T, LIN T, et al. Research on microstructure and mechanical properties of hot stamping 22MnB5 Boron steel plate[J]. Journal of ShenYang Ligong University, 2015, 34(6): 15-19. [10] MORI K, BARIANI P F, BEHRENS B A, et al. Hot stamping of ultra-high strength steel parts[J]. CIRP Annals, 2017, 66(2): 755-777. doi: 10.1016/j.cirp.2017.05.007 [11] MERKLEIN M, WIEAND M, LECHNER M, et al. Hot stamping of boron steel sheets with tailored properties: A review[J]. Journal of Materials Processing Technology, 2016, 228: 11-24. doi: 10.1016/j.jmatprotec.2015.09.023 [12] FEI Y J, XU Z H, LI H G, et al. The effect of quenching heating temperature on the microstructure and properties of 22MnB5 ultra high strength steel[J]. Hot Working Technology, 2019, 48(4): 210-214, 217. (费炜杰, 许正华, 李华冠, 等. 淬火加热温度对22MnB5超高强度钢组织及性能的影响[J]. 热加工工艺, 2019, 48(4): 210-214, 217.FEI Y J, XU Z H, LI H G, et al. The effect of quenching heating temperature on the microstructure and properties of 22MnB5 ultra high strength steel[J]. Hot Working Technology, 2019, 48(4): 210-214, 217. [13] SHI H J, CAO P, TANG P P, et al. The influence of temperature parameters on the properties of 22MnB5 ultra-high strength steel during hot forming process[J]. Die and Mould Technology, 2022, 40(3): 20-24. (石慧君, 曹 鹏, 汤鹏鹏, 等. 热成型过程中温度参数对22MnB5超高强钢性能的影响[J]. 模具技术, 2022, 40(3): 20-24.SHI H J, CAO P, TANG P P, et al. The influence of temperature parameters on the properties of 22MnB5 ultra-high strength steel during hot forming process[J]. Die and Mould Technology, 2022, 40(3): 20-24. [14] PAN H, WEI C, YU W, et al. Achieving excellent strength–ductility combination by cyclic quenching treatment in 22MnB5 steel[J]. Journal of Materials Engineering and Performance, 2022, 31(8): 6659-6663. doi: 10.1007/s11665-022-06737-0 [15] LI B, CHEN Y, ZHAO X, et al. Effect of a process on oxidative decarbonization behavior and mechanical properties of 22MnB5 steel[J]. Journal of Materials Engineering and Performance, 2024, 33(1): 213-226. doi: 10.1007/s11665-023-07985-4 [16] DEY P P, SAHU S, BANERJEE P S, et al. A review on metallurgical features of hot-dip aluminized steel[J]. Engineering Research Express, 2023, 5(1): 012002. doi: 10.1088/2631-8695/acb902 [17] YIN H, PENG Y C, LI X Z. Research progress on coating cracks in galvanized ultra-high strength steel plates[J]. Material Protection, 2024, 57(9): 107-116. (尹 浩, 彭玉春, 黎小洲. 镀锌超高强度钢板中镀层裂纹的研究进展[J]. 材料保护, 2024, 57(9): 107-116.YIN H, PENG Y C, LI X Z. Research progress on coating cracks in galvanized ultra-high strength steel plates[J]. Material Protection, 2024, 57(9): 107-116. [18] LEE C W, FAN D W, SOHN I R, et al. Liquid-metal-induced embrittlement of Zn-coated hot stamping steel[J]. Metallurgical and Materials Transactions A, 2012, 43(13): 5122-5127. doi: 10.1007/s11661-012-1316-0 [19] QIU X P, ZHANG J, JIANG S M, et al. The effect of stamping temperature on cracks in the coating of galvanized 22MnB5 steel plate[J]. Corrosion & Protection, 2018, 39(4): 302-322. (邱肖盼, 张 杰, 江社明, 等. 冲压温度对镀锌22MnB5钢板镀层中裂纹的影响[J]. 腐蚀与防护, 2018, 39(4): 302-322.QIU X P, ZHANG J, JIANG S M, et al. The effect of stamping temperature on cracks in the coating of galvanized 22MnB5 steel plate[J]. Corrosion & Protection, 2018, 39(4): 302-322. [20] LIU H D, WANG D Z, WEI H D, et al. Grain boundary segregation and precipitation behavior of boron microalloyed stainless steels[J]. Heat Treatment of Metals, 2013, 38(3): 47-52. (刘海定, 王东哲, 魏捍东, 等. 不锈钢中硼微合金化的晶界偏聚析出行为[J]. 金属热处理, 2013, 38(3): 47-52.LIU H D, WANG D Z, WEI H D, et al. Grain boundary segregation and precipitation behavior of boron microalloyed stainless steels[J]. Heat Treatment of Metals, 2013, 38(3): 47-52. [21] QIU S T, XIAO L J, LIU J Q, et al. Softening mechanism of boron-bearing low-carbon hot strips produced by TSCR route[J]. Acta Metallurgica Sinica, 2006, 42(11): 1202-1206. (仇圣桃, 肖丽俊, 刘家琪, 等. 薄板坯连铸连轧生产含硼低碳热轧带钢的软化机理[J]. 金属学报, 2006, 42(11): 1202-1206.QIU S T, XIAO L J, LIU J Q, et al. Softening mechanism of boron-bearing low-carbon hot strips produced by TSCR route[J]. Acta Metallurgica Sinica, 2006, 42(11): 1202-1206. -
下载: