中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

22MnB5钢亚温区加热淬火组织与力学性能的影响

姚小凤 亓海全 谢盈盈 李欣欣 李新茹 李腊梅

姚小凤, 亓海全, 谢盈盈, 李欣欣, 李新茹, 李腊梅. 22MnB5钢亚温区加热淬火组织与力学性能的影响[J]. 钢铁钒钛, 2025, 46(6): 164-171. doi: 10.7513/j.issn.1004-7638.2025.06.020
引用本文: 姚小凤, 亓海全, 谢盈盈, 李欣欣, 李新茹, 李腊梅. 22MnB5钢亚温区加热淬火组织与力学性能的影响[J]. 钢铁钒钛, 2025, 46(6): 164-171. doi: 10.7513/j.issn.1004-7638.2025.06.020
YAO Xiaofeng, QI Haiquan, XIE Yingying, LI Xinxin, LI Xinru, LI Lamei. The influence of sub-temperature heating on the quenching microstructure and mechanical properties of 22MnB5 steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 164-171. doi: 10.7513/j.issn.1004-7638.2025.06.020
Citation: YAO Xiaofeng, QI Haiquan, XIE Yingying, LI Xinxin, LI Xinru, LI Lamei. The influence of sub-temperature heating on the quenching microstructure and mechanical properties of 22MnB5 steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 164-171. doi: 10.7513/j.issn.1004-7638.2025.06.020

22MnB5钢亚温区加热淬火组织与力学性能的影响

doi: 10.7513/j.issn.1004-7638.2025.06.020
基金项目: 广西科技重大专项(桂科 AA22067079);广西科技计划项目(桂科 AD25069100);广西创新驱动发展专项(桂科 AA22067081)。
详细信息
    作者简介:

    姚小凤,2001年出生,女,广西柳州人,硕士研究生,研究方向为高强钢的开发与应用,E-mail:2020212239@qq.com

    通讯作者:

    亓海全,1981年出生,男,山东莱芜人,博士,副教授,研究方向为钢铁材料与热处理,E-mail:alexander_qi@163.com

  • 中图分类号: TF76,TG142

The influence of sub-temperature heating on the quenching microstructure and mechanical properties of 22MnB5 steel

  • 摘要: 通过设计不同加热时间和保温时间的热处理制度,系统研究了680~930 ℃不同温度对22MnB5钢淬火组织与力学性能的影响。结果表明,在低温区(680~700 ℃)长时间受热会导致材料软化,高温区(850~930 ℃)长时间受热对力学性能提高有限;而在亚温区(720~820 ℃)长时间受热时,力学性能显著提高。尤其是在820 ℃加热20 min后淬火,抗拉强度和屈服强度分别达到1589 MPa和1078 MPa,较原始状态分别提升151.02%和132.82%。研究表明,通过优化亚温区加热制度,22MnB5钢可以在低于现有工艺温度下获得1500 MPa级别的抗拉强度,为解决现有热成形工艺问题提供了新途径。
  • 图  1  22MnB5钢的CCT曲线

    Figure  1.  CCT curve of 22MnB5 steel

    图  2  拉伸试样尺寸示意(单位:mm)

    Figure  2.  chematic diagram of the tensile specimen dimensions

    图  3  22MnB5钢在680~930 ℃加热后保温不同时间的室温拉伸性能

    (a)抗拉强度 ;(b)屈服强度 ;(c)伸长率

    Figure  3.  Room temperature tensile properties of 22MnB5 steel heated at 680-930 ℃ and held for different times

    图  4  22MnB5钢在680~930 ℃加热后保温不同时间显微硬度

    Figure  4.  Micro-hardness of 22MnB5 steel after heating and holding at 680-930 ℃ for different times

    图  5  22MnB5钢在不同温度加热保温5 min后水淬显微组织

    (a)原始钢板;(b)680 ℃;(c)700 ℃;(d)760 ℃;(e)820 ℃;(f)850 ℃;(g)910 ℃

    Figure  5.  Microstructure diagram of water quenching of 22MnB5 steel after heating and holding at different temperatures for 5 min

    图  6  22MnB5钢在不同温度加热后保温10 min后水淬显微组织

    Figure  6.  Microstructure diagram of water quenching of 22MnB5 steel after heating and holding at different temperatures for 10 min

    (a)680 ℃;(b)700 ℃;(c)760 ℃;(d)820 ℃;(e)850 ℃;(f)910 ℃

    图  7  22MnB5钢在不同温度加热后保温20 min后水淬显微组织

    Figure  7.  Microstructure diagram of water quenching of 22MnB5 steel after heating and holding at different temperatures for 20 min

    (a)680 ℃;(b)700 ℃;(c)760 ℃;(d)820 ℃;(e)850 ℃;(f)910 ℃

    图  8  22MnB5钢在760 ℃和820 ℃加热并保温20 min后水淬的SEM与EDS表征

    (a)(d)SEM图;(b)(e)点扫描元素含量;(c)(f)面扫描元素分布

    Figure  8.  SEM and EDS images of water-quenched 22MnB5 steel after heating and holding at 760 °C and 820 °C for 20 min

    图  9  22MnB5钢在760 ℃和820 ℃加热并保温不同时间的取向分布

    (a1)~(a3)原始钢板;(b1)~(b3)760 ℃,20 min;(c1)~(c3)820 ℃,20 min

    Figure  9.  Orientation distribution of 22MnB5 steel heated at 760 ℃ and 820 ℃ for different holding times

    表  1  原始22MnB5钢的主要化学成分

    Table  1.   The main chemical composition of as-received 22MnB5 steel %

    C Si Mn Al Ti B V Nb Fe
    0.18 0.21 1.279 0.06 0.037 0.0059 0.0015 0.0036 bal
    下载: 导出CSV

    表  2  原始22MnB5钢的力学性能

    Table  2.   Mechanical properties of as-received 22MnB5 steel

    RP0.2/ MPaRm/ MPaElongation/%HV
    46363333.65182
    下载: 导出CSV

    表  3  22MnB5钢在不同热处理下大小角度晶界占比及平均晶粒尺寸统计结果

    Table  3.   Statistical results of the percentage of low-angle and high-angle grain boundaries and average grain size of 22MnB5 steel under different heat treatments

    加热温度/℃ 保温时间/min LAGB/% HAGB/% 平均晶粒尺寸/μm
    原始钢板 8.58 91.42 0.440
    760 20 57.83 42.17 0.355
    820 20 59.32 40.68 0.371
    下载: 导出CSV
  • [1] LEWIS G M, BUCHANAN C A, JHAVERI K D, et al. Green principles for vehicle lightweighting[J]. Environmental Science & Technology, 2019, 53(8): 4063-4077.
    [2] NINA B, DRAGAN A, NENAD G, et al. Lightweight materials for automobiles[J]. IOP Conference Series: Materials Science and Engineering, 2022, 1271(1): 012010. doi: 10.1088/1757-899X/1271/1/012010
    [3] HAN Y, LIU H S, XIAO B L. The current situation and development trend of the development and application of automotive steel in China[J]. Steel Rolling, 2024, 41(5): 108-120. (韩 赟, 刘华赛, 肖宝亮. 我国汽车用钢开发应用现状及发展趋势[J]. 轧钢, 2024, 41(5): 108-120.

    HAN Y, LIU H S, XIAO B L. The current situation and development trend of the development and application of automotive steel in China[J]. Steel Rolling, 2024, 41(5): 108-120.
    [4] TANG Y S, SI Y, XU Z M, et al. Application and research progress of ultra-high strength steel in automotive lightweighting[J]. Heat Treatment of Metals, 2023, 48(10): 247-254. (唐远寿, 司 宇, 徐正萌, 等. 超高强度钢在汽车轻量化中的应用及研究进展[J]. 金属热处理, 2023, 48(10): 247-254.

    TANG Y S, SI Y, XU Z M, et al. Application and research progress of ultra-high strength steel in automotive lightweighting[J]. Heat Treatment of Metals, 2023, 48(10): 247-254.
    [5] NIE P L. Research on temperature field and microstructure and properties of 22MnB5 variable thickness high strength steel plate during hot stamping forming[D]. Hebei: Yanshan University, 2023. (聂鹏龙. 22MnB5变厚度高强钢板热冲压成形温度场及组织性能研究[D]. 河北: 燕山大学, 2023.

    NIE P L. Research on temperature field and microstructure and properties of 22MnB5 variable thickness high strength steel plate during hot stamping forming[D]. Hebei: Yanshan University, 2023.
    [6] TONG C, RONG Q, YARDLEY V A, et al. New developments and future trends in low-temperature hot stamping technologies: A Review[J]. Metals, 2020, 10(12): 1652. doi: 10.3390/met10121652
    [7] HE W, YANG B, ZHANG X, et al. Investigation into the hot-forming limit for 22MnB5 hot-forming steel under a stamping process[J]. Metals, 2024, 14(5): 561. doi: 10.3390/met14050561
    [8] WANG H L, YUE C X, ZHANG Z J, et al. Development and application of 22MnB5 ultra-high strength hot stamping steel[J]. Journal of Plasticity Engineering, 2024, 31(1): 195-203. (王欢龙, 岳重祥, 张志建, 等. 22MnB5超高强度热冲压成形钢的开发及应用[J]. 塑性工程学报, 2024, 31(1): 195-203.

    WANG H L, YUE C X, ZHANG Z J, et al. Development and application of 22MnB5 ultra-high strength hot stamping steel[J]. Journal of Plasticity Engineering, 2024, 31(1): 195-203.
    [9] ZHU X, WANG Z T, LIN T, et al. Research on microstructure and mechanical properties of hot stamping 22MnB5 Boron steel plate[J]. Journal of ShenYang Ligong University, 2015, 34(6): 15-19. (祝 哮, 王忠堂, 林 涛, 等. 22MnB5硼钢板热冲压成形组织及力学性能研究[J]. 沈阳理工大学学报, 2015, 34(6): 15-19.

    ZHU X, WANG Z T, LIN T, et al. Research on microstructure and mechanical properties of hot stamping 22MnB5 Boron steel plate[J]. Journal of ShenYang Ligong University, 2015, 34(6): 15-19.
    [10] MORI K, BARIANI P F, BEHRENS B A, et al. Hot stamping of ultra-high strength steel parts[J]. CIRP Annals, 2017, 66(2): 755-777. doi: 10.1016/j.cirp.2017.05.007
    [11] MERKLEIN M, WIEAND M, LECHNER M, et al. Hot stamping of boron steel sheets with tailored properties: A review[J]. Journal of Materials Processing Technology, 2016, 228: 11-24. doi: 10.1016/j.jmatprotec.2015.09.023
    [12] FEI Y J, XU Z H, LI H G, et al. The effect of quenching heating temperature on the microstructure and properties of 22MnB5 ultra high strength steel[J]. Hot Working Technology, 2019, 48(4): 210-214, 217. (费炜杰, 许正华, 李华冠, 等. 淬火加热温度对22MnB5超高强度钢组织及性能的影响[J]. 热加工工艺, 2019, 48(4): 210-214, 217.

    FEI Y J, XU Z H, LI H G, et al. The effect of quenching heating temperature on the microstructure and properties of 22MnB5 ultra high strength steel[J]. Hot Working Technology, 2019, 48(4): 210-214, 217.
    [13] SHI H J, CAO P, TANG P P, et al. The influence of temperature parameters on the properties of 22MnB5 ultra-high strength steel during hot forming process[J]. Die and Mould Technology, 2022, 40(3): 20-24. (石慧君, 曹 鹏, 汤鹏鹏, 等. 热成型过程中温度参数对22MnB5超高强钢性能的影响[J]. 模具技术, 2022, 40(3): 20-24.

    SHI H J, CAO P, TANG P P, et al. The influence of temperature parameters on the properties of 22MnB5 ultra-high strength steel during hot forming process[J]. Die and Mould Technology, 2022, 40(3): 20-24.
    [14] PAN H, WEI C, YU W, et al. Achieving excellent strength–ductility combination by cyclic quenching treatment in 22MnB5 steel[J]. Journal of Materials Engineering and Performance, 2022, 31(8): 6659-6663. doi: 10.1007/s11665-022-06737-0
    [15] LI B, CHEN Y, ZHAO X, et al. Effect of a process on oxidative decarbonization behavior and mechanical properties of 22MnB5 steel[J]. Journal of Materials Engineering and Performance, 2024, 33(1): 213-226. doi: 10.1007/s11665-023-07985-4
    [16] DEY P P, SAHU S, BANERJEE P S, et al. A review on metallurgical features of hot-dip aluminized steel[J]. Engineering Research Express, 2023, 5(1): 012002. doi: 10.1088/2631-8695/acb902
    [17] YIN H, PENG Y C, LI X Z. Research progress on coating cracks in galvanized ultra-high strength steel plates[J]. Material Protection, 2024, 57(9): 107-116. (尹 浩, 彭玉春, 黎小洲. 镀锌超高强度钢板中镀层裂纹的研究进展[J]. 材料保护, 2024, 57(9): 107-116.

    YIN H, PENG Y C, LI X Z. Research progress on coating cracks in galvanized ultra-high strength steel plates[J]. Material Protection, 2024, 57(9): 107-116.
    [18] LEE C W, FAN D W, SOHN I R, et al. Liquid-metal-induced embrittlement of Zn-coated hot stamping steel[J]. Metallurgical and Materials Transactions A, 2012, 43(13): 5122-5127. doi: 10.1007/s11661-012-1316-0
    [19] QIU X P, ZHANG J, JIANG S M, et al. The effect of stamping temperature on cracks in the coating of galvanized 22MnB5 steel plate[J]. Corrosion & Protection, 2018, 39(4): 302-322. (邱肖盼, 张 杰, 江社明, 等. 冲压温度对镀锌22MnB5钢板镀层中裂纹的影响[J]. 腐蚀与防护, 2018, 39(4): 302-322.

    QIU X P, ZHANG J, JIANG S M, et al. The effect of stamping temperature on cracks in the coating of galvanized 22MnB5 steel plate[J]. Corrosion & Protection, 2018, 39(4): 302-322.
    [20] LIU H D, WANG D Z, WEI H D, et al. Grain boundary segregation and precipitation behavior of boron microalloyed stainless steels[J]. Heat Treatment of Metals, 2013, 38(3): 47-52. (刘海定, 王东哲, 魏捍东, 等. 不锈钢中硼微合金化的晶界偏聚析出行为[J]. 金属热处理, 2013, 38(3): 47-52.

    LIU H D, WANG D Z, WEI H D, et al. Grain boundary segregation and precipitation behavior of boron microalloyed stainless steels[J]. Heat Treatment of Metals, 2013, 38(3): 47-52.
    [21] QIU S T, XIAO L J, LIU J Q, et al. Softening mechanism of boron-bearing low-carbon hot strips produced by TSCR route[J]. Acta Metallurgica Sinica, 2006, 42(11): 1202-1206. (仇圣桃, 肖丽俊, 刘家琪, 等. 薄板坯连铸连轧生产含硼低碳热轧带钢的软化机理[J]. 金属学报, 2006, 42(11): 1202-1206.

    QIU S T, XIAO L J, LIU J Q, et al. Softening mechanism of boron-bearing low-carbon hot strips produced by TSCR route[J]. Acta Metallurgica Sinica, 2006, 42(11): 1202-1206.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  17
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-08
  • 录用日期:  2025-06-19
  • 修回日期:  2025-06-13
  • 网络出版日期:  2025-12-31
  • 刊出日期:  2025-12-31

目录

    /

    返回文章
    返回