中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轧后调质处理对热轧Q345R钢中元素偏析与带状组织的调控作用

杨艳 汪贺模 高擎 彭飞 张开铭 袁武华

杨艳, 汪贺模, 高擎, 彭飞, 张开铭, 袁武华. 轧后调质处理对热轧Q345R钢中元素偏析与带状组织的调控作用[J]. 钢铁钒钛, 2025, 46(6): 179-185. doi: 10.7513/j.issn.1004-7638.2025.06.022
引用本文: 杨艳, 汪贺模, 高擎, 彭飞, 张开铭, 袁武华. 轧后调质处理对热轧Q345R钢中元素偏析与带状组织的调控作用[J]. 钢铁钒钛, 2025, 46(6): 179-185. doi: 10.7513/j.issn.1004-7638.2025.06.022
YANG Yan, WANG Hemu, GAO Qing, PENG Fei, ZHANG Kaiming, YUAN Wuhua. Regulation effect of post-rolling quenching and tempering treatment on element segregation and banded microstructure in hot-rolled Q345R steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 179-185. doi: 10.7513/j.issn.1004-7638.2025.06.022
Citation: YANG Yan, WANG Hemu, GAO Qing, PENG Fei, ZHANG Kaiming, YUAN Wuhua. Regulation effect of post-rolling quenching and tempering treatment on element segregation and banded microstructure in hot-rolled Q345R steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 179-185. doi: 10.7513/j.issn.1004-7638.2025.06.022

轧后调质处理对热轧Q345R钢中元素偏析与带状组织的调控作用

doi: 10.7513/j.issn.1004-7638.2025.06.022
详细信息
    作者简介:

    杨艳,1981年出生,女,陕西富平人,本科,高级工程师,主要从事板材热处理相关工艺技术研究,E-mail:Yy9958@163.com

    通讯作者:

    袁武华,1973年出生,男,湖南长沙人,博士,教授,主要从事金属材料制备与应用技术研究,E-mail:yuan46302@163.com

  • 中图分类号: TF125.1,TG156

Regulation effect of post-rolling quenching and tempering treatment on element segregation and banded microstructure in hot-rolled Q345R steel

  • 摘要: 深入探究了轧后调质处理(890 ℃淬火+710 ℃回火)对热轧Q345R钢中元素偏析及其引发的带状组织的调控作用与机制。结果表明:热轧Q345R钢由再结晶铁素体和珠光体组成,珠光体呈带状分布,铁素体晶界及晶内的珠光体呈颗粒状分布;经过轧后调质处理的Q345R钢基体组织为回火马氏体,且内部存在少量再结晶马氏体,回火马氏体中富C富Mn区域存在渗碳体密集析出带。热轧和轧后调质处理Q345R钢中均存在显著的C、Mn元素偏析,且带状组织(珠光体带或渗碳体析出带)均与元素偏析带高度重合。轧后调质处理虽未消除凝固遗留的元素偏析,但通过马氏体相变有效打破了固态相变对原始元素分布的高度依赖性,显著调控了带状组织的形成模式与特征,并将带状组织等级从5B降低至3B;同时,将软硬相强度差值从206.76 MPa调控降低至119.48 MPa,有效改善了因带状组织导致的力学性能不均匀性。
  • 图  1  Q345R钢的典型OM组织

    (a)(b)热轧工艺;(c)(d)调质处理工艺

    Figure  1.  Typical OM microstructure of Q345R steel

    图  2  Q345R钢的带状组织等级评定

    (a)热轧工艺;(b)调质处理工艺

    Figure  2.  Band structure grading of Q345R steel

    图  3  Q345R钢的典型SEM形貌特征

    (a)(b)热轧工艺;(c)(d)调质处理工艺

    Figure  3.  Typical SEM morphological characteristics of Q345R steel

    图  4  Q345R钢的波谱线扫结果

    (a)热轧工艺;(b)调质处理工艺

    Figure  4.  Wavelength dispersive spectrometer(WDS) line-scanning results of Q345R steel

    图  5  Q345R钢热轧工艺和调质处理工艺的EBSD结果

    (a)(b) BC值及晶界分布;(c)(d)取向分布;(e)(f)微取向差分布

    Figure  5.  EBSD results of Q345R steel

    表  1  试验钢化学成分

    Table  1.   Chemical composition of the tested steel %

    CSiMnPSCr
    0.160.351.520.0050.0020.28
    下载: 导出CSV

    表  2  不同工艺下Q345R钢中各相的维氏显微硬度值

    Table  2.   Vickers micro-hardness values of each phase in Q345R steel under different processes

    Process type Detection position Hardness(HV) Conversion strength/MPa Difference in hardness and softness strength/MPa
    Hot rolling process Ferrite + Grain boundary pearlite 138.49 443.96 206.76
    Pearlite band 204.26 650.72
    Tempering process Tempered martensitic matrix 160.70 512.33 119.48
    Carbide precipitation band 199.15 631.81
    下载: 导出CSV
  • [1] YANG Y K, ZHU J Y, LI X M, et al. A review of research on banded structure control in low carbon alloy steel[J]. Iron & Steel, 2023, 58(4): 1-10. (杨永坤, 朱佳雨, 李小明, 等. 低碳合金钢带状组织控制研究现状[J]. 钢铁, 2023, 58(4): 1-10.

    YANG Y K, ZHU J Y, LI X M, et al. A review of research on banded structure control in low carbon alloy steel[J]. Iron & Steel, 2023, 58(4): 1-10.
    [2] JI Y, MIN Y F, LI P S, et al. Research status of banding phenomena in steels[J]. China Metallurgy, 2016, 26(4): 1-9. (纪元, 闵云峰, 李鹏善, 等. 钢中带状组织及其研究现状[J]. 中国冶金, 2016, 26(4): 1-9.

    JI Y, MIN Y F, LI P S, et al. Research status of banding phenomena in steels[J]. China Metallurgy, 2016, 26(4): 1-9.
    [3] LI J M. Study on slab quality control of high manganese steel for continuous casting[D]. Shenyang: Northeastern University, 2019. (李建民. 高锰钢连铸坯质量控制研究[D]. 沈阳: 东北大学, 2019.

    LI J M. Study on slab quality control of high manganese steel for continuous casting[D]. Shenyang: Northeastern University, 2019.
    [4] WANG F, YUAN S Q, TIAN Y J, et al. Current research situation of alleviating or eliminating band structure in steel[J]. Hot Working Technology, 2013, 42(5): 52-54. (王芳, 袁书强, 田雨江, 等. 带状组织减轻或消除工艺研究现状[J]. 热加工工艺, 2013, 42(5): 52-54.

    WANG F, YUAN S Q, TIAN Y J, et al. Current research situation of alleviating or eliminating band structure in steel[J]. Hot Working Technology, 2013, 42(5): 52-54.
    [5] LI Y H. Formation reason and elimination of banded structure in Q345R steel hot formed head[J]. Heat Treatment of Metals, 2016, 41(5): 200-202. (李玉红. Q345R钢热成型封头带状组织的成因和消除[J]. 金属热处理, 2016, 41(5): 200-202.

    LI Y H. Formation reason and elimination of banded structure in Q345R steel hot formed head[J]. Heat Treatment of Metals, 2016, 41(5): 200-202.
    [6] CAI Z, HUANG Y H, ZHANG Y, et al. Mechanism of effect of cooling rate on ferrite/pearlite banded structure[J]. Journal of Iron and Steel Research, 2012, 24(6): 25-30. (蔡珍, 黄运华, 张跃, 等. 冷却速度对铁素体-珠光体带状组织的影响机制[J]. 钢铁研究学报, 2012, 24(6): 25-30.

    CAI Z, HUANG Y H, ZHANG Y, et al. Mechanism of effect of cooling rate on ferrite/pearlite banded structure[J]. Journal of Iron and Steel Research, 2012, 24(6): 25-30.
    [7] CHENG X, GAO G, FU C, et al. Mechanistic understanding of banded microstructure and its effect on anisotropy of toughness in low carbon-low alloy steel[J]. Materials Science and Engineering: A, 2025, 919: 147507. doi: 10.1016/j.msea.2024.147507
    [8] LI W, ZHOU Y, CAO Z, et al. Mitigating hydrogen embrittlement sensitivity in quenching and partitioning steel by optimizing the microstructure of segregation bands[J]. Materials Letters, 2024, 371: 136975. doi: 10.1016/j.matlet.2024.136975
    [9] XIE Z L, CHEN J H, ZHANG B J, et al. Effect of normalizing temperature on microstructure and mechanical properties of cryogenic pressure vessel steel plate[J]. Heat Treatment of Metals, 2023, 48(9): 110-115. (谢章龙, 陈家辉, 张丙军, 等. 正火温度对低温压力容器钢板组织与力学性能的影响[J]. 金属热处理, 2023, 48(9): 110-115.

    XIE Z L, CHEN J H, ZHANG B J, et al. Effect of normalizing temperature on microstructure and mechanical properties of cryogenic pressure vessel steel plate[J]. Heat Treatment of Metals, 2023, 48(9): 110-115.
    [10] LUO D, ZHANG Y W, ZHANG J M, et al. Effect of heat treatment in two phase zone on banded structure of Q345R pressure vessel steel[J]. Hot Working Technology, 2020, 49(2): 128-136. (罗登, 张勇伟, 张计谋, 等. 两相区热处理对Q345R压力容器钢带状组织的影响[J]. 热加工工艺, 2020, 49(2): 128-136.

    LUO D, ZHANG Y W, ZHANG J M, et al. Effect of heat treatment in two phase zone on banded structure of Q345R pressure vessel steel[J]. Hot Working Technology, 2020, 49(2): 128-136.
    [11] SUN J, ZHANG L P, ZHENG G Y, et al. 22CrMoH gear steel banded organization causes and preventive measures[J]. Lai Steel Technology, 2005(3): 10-11. (孙进, 张利平, 郑桂芸, 等. 22CrMoH齿轮钢带状组织成因及预防措施[J]. 莱钢科技, 2005(3): 10-11.

    SUN J, ZHANG L P, ZHENG G Y, et al. 22CrMoH gear steel banded organization causes and preventive measures[J]. Lai Steel Technology, 2005(3): 10-11.
    [12] WANG Y B. Study on the hardenability and band organization of 20CrMoH gear steel[D]. Kunming: Kunming University of Science and Technology, 2010. (王彦彬. 20CrMoH齿轮钢的淬透性及带状组织研究[D]. 昆明: 昆明理工大学, 2010.

    WANG Y B. Study on the hardenability and band organization of 20CrMoH gear steel[D]. Kunming: Kunming University of Science and Technology, 2010.
    [13] ZHUANG J R, SUN S Q, LI M Z, et al. Research on isothermal normalizing process of TL-4521 gear forging billet[J]. MW Metal Forming, 2010, 000(21): 30-33. (庄稼稔, 孙少权, 李明哲, 等. TL-4521齿轮锻坯等温正火工艺的研究[J]. 金属加工(热加工), 2010, 000(21): 30-33.

    ZHUANG J R, SUN S Q, LI M Z, et al. Research on isothermal normalizing process of TL-4521 gear forging billet[J]. MW Metal Forming, 2010, 000(21): 30-33.
    [14] WANG H Z, ZHAI Y W, ZHOU L Y. Isothermal normalizing process of 18CrNiMo7-6 gear steel directly after warm forging[J]. Heat Treatment of Metals, 2020, 45(11): 78-82. (王会珍, 翟月雯, 周乐育. 18CrNiMo7-6齿轮钢温锻后余热等温正火工艺[J]. 金属热处理, 2020, 45(11): 78-82.

    WANG H Z, ZHAI Y W, ZHOU L Y. Isothermal normalizing process of 18CrNiMo7-6 gear steel directly after warm forging[J]. Heat Treatment of Metals, 2020, 45(11): 78-82.
    [15] BOR A S. Effect of pearlite banding on mechanical properties of hot-rolled steel plates[J]. ISIJ International, 1991, 31(12): 1445-1446. doi: 10.2355/isijinternational.31.1445
    [16] ZHANG S, REN Y, WANG S, et al. Effect of thermo-mechanical control process on properties and microstructure of high strain submarine pipeline steel[J]. Journal of Iron and Steel Research, 2023, 35(11): 1384-1393. (张帅, 任毅, 王爽, 等. 控轧控冷工艺对海洋高应变管线钢性能和组织的影响[J]. 钢铁研究学报, 2023, 35(11): 1384-1393.

    ZHANG S, REN Y, WANG S, et al. Effect of thermo-mechanical control process on properties and microstructure of high strain submarine pipeline steel[J]. Journal of Iron and Steel Research, 2023, 35(11): 1384-1393.
    [17] GAO P, GAO Y, CHEN J, et al. Effect of tempering temperature on microstructure and properties of 1000 MPa high strength steel produced by DQ process[J]. Heat Treatment of Metals, 2019, 44(10): 72-76. (高朋, 高野, 陈俊, 等. 回火温度对DQ工艺1000 MPa级高强钢组织及性能的影响[J]. 金属热处理, 2019, 44(10): 72-76.

    GAO P, GAO Y, CHEN J, et al. Effect of tempering temperature on microstructure and properties of 1000 MPa high strength steel produced by DQ process[J]. Heat Treatment of Metals, 2019, 44(10): 72-76.
    [18] KITAHARA H, UEJI R, TSUJI N, et al. Crystallographic features of lath martensite in low-carbon steel[J]. Acta Materialia, 2006, 54(5): 1279-1288. doi: 10.1016/j.actamat.2005.11.001
    [19] XU F, SUN Q, MENG J W. Effect of solution treatment temperature on microstructure and properties of ultra-low carbon 15-5PH precipitation hardened stainless steel[J]. Heat Treatment of Metals, 2024, 49(8): 124-129. (徐锋, 孙强, 孟吉炜. 固溶温度对超低碳15-5PH沉淀硬化不锈钢组织和性能的影响[J]. 金属热处理, 2024, 49(8): 124-129.

    XU F, SUN Q, MENG J W. Effect of solution treatment temperature on microstructure and properties of ultra-low carbon 15-5PH precipitation hardened stainless steel[J]. Heat Treatment of Metals, 2024, 49(8): 124-129.
    [20] ZHANG X G, MIYAMOTO G, TOJI Y, et al. Orientation of austenite reverted from martensite in Fe-2Mn-1.5Si-0.3C alloy[J]. Acta Materialia, 2018, 144: 601-612. doi: 10.1016/j.actamat.2017.11.003
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  14
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-09
  • 录用日期:  2025-06-19
  • 修回日期:  2025-06-11
  • 网络出版日期:  2025-12-31
  • 刊出日期:  2025-12-31

目录

    /

    返回文章
    返回