Regulation effect of post-rolling quenching and tempering treatment on element segregation and banded microstructure in hot-rolled Q345R steel
-
摘要: 深入探究了轧后调质处理(890 ℃淬火+710 ℃回火)对热轧Q345R钢中元素偏析及其引发的带状组织的调控作用与机制。结果表明:热轧Q345R钢由再结晶铁素体和珠光体组成,珠光体呈带状分布,铁素体晶界及晶内的珠光体呈颗粒状分布;经过轧后调质处理的Q345R钢基体组织为回火马氏体,且内部存在少量再结晶马氏体,回火马氏体中富C富Mn区域存在渗碳体密集析出带。热轧和轧后调质处理Q345R钢中均存在显著的C、Mn元素偏析,且带状组织(珠光体带或渗碳体析出带)均与元素偏析带高度重合。轧后调质处理虽未消除凝固遗留的元素偏析,但通过马氏体相变有效打破了固态相变对原始元素分布的高度依赖性,显著调控了带状组织的形成模式与特征,并将带状组织等级从5B降低至3B;同时,将软硬相强度差值从206.76 MPa调控降低至119.48 MPa,有效改善了因带状组织导致的力学性能不均匀性。Abstract: The regulation effect and mechanism of quenching and tempering treatment after rolling (890 ℃ quenching + 710 ℃ tempering) on element segregation and the resultant banded microstructure in hot-rolled Q345R steel were thoroughly investigated. The results show that the microstructure of the hot-rolled Q345R steel consists of recrystallized ferrite and pearlite. The pearlite is distributed in bands and granular pearlite presents at the ferrite grain boundaries and within ferrite grain. The matrix microstructure of Q345R steel prepared by quenching and tempering treatment is tempered martensite containing a small amount of recrystallized martensite, with dense cementite precipitation bands observed in C- and Mn-rich regions of the tempered martensite. Critically, significant C and Mn segregation exists in both hot-rolled and quenched & tempered Q345R steel, and the banded microstructure (pearlite bands or cementite precipitation bands) highly coincides with the segregation bands. Although quenching and tempering after rolling does not eliminate the solidification-inherited element segregation, it effectively regulates the formation mode and characteristics of the banded structure by disrupting the high dependence of solid-state phase transformation on the original elemental distribution via martensitic transformation, reducing the banding severity from grade 5B to 3B. Concurrently, it reduces the strength difference between soft and hard phases from 206.76 MPa to 119.48 MPa, thereby ameliorating the mechanical property inhomogeneity induced by the banded microstructure.
-
表 1 试验钢化学成分
Table 1. Chemical composition of the tested steel
% C Si Mn P S Cr 0.16 0.35 1.52 0.005 0.002 0.28 表 2 不同工艺下Q345R钢中各相的维氏显微硬度值
Table 2. Vickers micro-hardness values of each phase in Q345R steel under different processes
Process type Detection position Hardness(HV) Conversion strength/MPa Difference in hardness and softness strength/MPa Hot rolling process Ferrite + Grain boundary pearlite 138.49 443.96 206.76 Pearlite band 204.26 650.72 Tempering process Tempered martensitic matrix 160.70 512.33 119.48 Carbide precipitation band 199.15 631.81 -
[1] YANG Y K, ZHU J Y, LI X M, et al. A review of research on banded structure control in low carbon alloy steel[J]. Iron & Steel, 2023, 58(4): 1-10. (杨永坤, 朱佳雨, 李小明, 等. 低碳合金钢带状组织控制研究现状[J]. 钢铁, 2023, 58(4): 1-10.YANG Y K, ZHU J Y, LI X M, et al. A review of research on banded structure control in low carbon alloy steel[J]. Iron & Steel, 2023, 58(4): 1-10. [2] JI Y, MIN Y F, LI P S, et al. Research status of banding phenomena in steels[J]. China Metallurgy, 2016, 26(4): 1-9. (纪元, 闵云峰, 李鹏善, 等. 钢中带状组织及其研究现状[J]. 中国冶金, 2016, 26(4): 1-9.JI Y, MIN Y F, LI P S, et al. Research status of banding phenomena in steels[J]. China Metallurgy, 2016, 26(4): 1-9. [3] LI J M. Study on slab quality control of high manganese steel for continuous casting[D]. Shenyang: Northeastern University, 2019. (李建民. 高锰钢连铸坯质量控制研究[D]. 沈阳: 东北大学, 2019.LI J M. Study on slab quality control of high manganese steel for continuous casting[D]. Shenyang: Northeastern University, 2019. [4] WANG F, YUAN S Q, TIAN Y J, et al. Current research situation of alleviating or eliminating band structure in steel[J]. Hot Working Technology, 2013, 42(5): 52-54. (王芳, 袁书强, 田雨江, 等. 带状组织减轻或消除工艺研究现状[J]. 热加工工艺, 2013, 42(5): 52-54.WANG F, YUAN S Q, TIAN Y J, et al. Current research situation of alleviating or eliminating band structure in steel[J]. Hot Working Technology, 2013, 42(5): 52-54. [5] LI Y H. Formation reason and elimination of banded structure in Q345R steel hot formed head[J]. Heat Treatment of Metals, 2016, 41(5): 200-202. (李玉红. Q345R钢热成型封头带状组织的成因和消除[J]. 金属热处理, 2016, 41(5): 200-202.LI Y H. Formation reason and elimination of banded structure in Q345R steel hot formed head[J]. Heat Treatment of Metals, 2016, 41(5): 200-202. [6] CAI Z, HUANG Y H, ZHANG Y, et al. Mechanism of effect of cooling rate on ferrite/pearlite banded structure[J]. Journal of Iron and Steel Research, 2012, 24(6): 25-30. (蔡珍, 黄运华, 张跃, 等. 冷却速度对铁素体-珠光体带状组织的影响机制[J]. 钢铁研究学报, 2012, 24(6): 25-30.CAI Z, HUANG Y H, ZHANG Y, et al. Mechanism of effect of cooling rate on ferrite/pearlite banded structure[J]. Journal of Iron and Steel Research, 2012, 24(6): 25-30. [7] CHENG X, GAO G, FU C, et al. Mechanistic understanding of banded microstructure and its effect on anisotropy of toughness in low carbon-low alloy steel[J]. Materials Science and Engineering: A, 2025, 919: 147507. doi: 10.1016/j.msea.2024.147507 [8] LI W, ZHOU Y, CAO Z, et al. Mitigating hydrogen embrittlement sensitivity in quenching and partitioning steel by optimizing the microstructure of segregation bands[J]. Materials Letters, 2024, 371: 136975. doi: 10.1016/j.matlet.2024.136975 [9] XIE Z L, CHEN J H, ZHANG B J, et al. Effect of normalizing temperature on microstructure and mechanical properties of cryogenic pressure vessel steel plate[J]. Heat Treatment of Metals, 2023, 48(9): 110-115. (谢章龙, 陈家辉, 张丙军, 等. 正火温度对低温压力容器钢板组织与力学性能的影响[J]. 金属热处理, 2023, 48(9): 110-115.XIE Z L, CHEN J H, ZHANG B J, et al. Effect of normalizing temperature on microstructure and mechanical properties of cryogenic pressure vessel steel plate[J]. Heat Treatment of Metals, 2023, 48(9): 110-115. [10] LUO D, ZHANG Y W, ZHANG J M, et al. Effect of heat treatment in two phase zone on banded structure of Q345R pressure vessel steel[J]. Hot Working Technology, 2020, 49(2): 128-136. (罗登, 张勇伟, 张计谋, 等. 两相区热处理对Q345R压力容器钢带状组织的影响[J]. 热加工工艺, 2020, 49(2): 128-136.LUO D, ZHANG Y W, ZHANG J M, et al. Effect of heat treatment in two phase zone on banded structure of Q345R pressure vessel steel[J]. Hot Working Technology, 2020, 49(2): 128-136. [11] SUN J, ZHANG L P, ZHENG G Y, et al. 22CrMoH gear steel banded organization causes and preventive measures[J]. Lai Steel Technology, 2005(3): 10-11. (孙进, 张利平, 郑桂芸, 等. 22CrMoH齿轮钢带状组织成因及预防措施[J]. 莱钢科技, 2005(3): 10-11.SUN J, ZHANG L P, ZHENG G Y, et al. 22CrMoH gear steel banded organization causes and preventive measures[J]. Lai Steel Technology, 2005(3): 10-11. [12] WANG Y B. Study on the hardenability and band organization of 20CrMoH gear steel[D]. Kunming: Kunming University of Science and Technology, 2010. (王彦彬. 20CrMoH齿轮钢的淬透性及带状组织研究[D]. 昆明: 昆明理工大学, 2010.WANG Y B. Study on the hardenability and band organization of 20CrMoH gear steel[D]. Kunming: Kunming University of Science and Technology, 2010. [13] ZHUANG J R, SUN S Q, LI M Z, et al. Research on isothermal normalizing process of TL-4521 gear forging billet[J]. MW Metal Forming, 2010, 000(21): 30-33. (庄稼稔, 孙少权, 李明哲, 等. TL-4521齿轮锻坯等温正火工艺的研究[J]. 金属加工(热加工), 2010, 000(21): 30-33.ZHUANG J R, SUN S Q, LI M Z, et al. Research on isothermal normalizing process of TL-4521 gear forging billet[J]. MW Metal Forming, 2010, 000(21): 30-33. [14] WANG H Z, ZHAI Y W, ZHOU L Y. Isothermal normalizing process of 18CrNiMo7-6 gear steel directly after warm forging[J]. Heat Treatment of Metals, 2020, 45(11): 78-82. (王会珍, 翟月雯, 周乐育. 18CrNiMo7-6齿轮钢温锻后余热等温正火工艺[J]. 金属热处理, 2020, 45(11): 78-82.WANG H Z, ZHAI Y W, ZHOU L Y. Isothermal normalizing process of 18CrNiMo7-6 gear steel directly after warm forging[J]. Heat Treatment of Metals, 2020, 45(11): 78-82. [15] BOR A S. Effect of pearlite banding on mechanical properties of hot-rolled steel plates[J]. ISIJ International, 1991, 31(12): 1445-1446. doi: 10.2355/isijinternational.31.1445 [16] ZHANG S, REN Y, WANG S, et al. Effect of thermo-mechanical control process on properties and microstructure of high strain submarine pipeline steel[J]. Journal of Iron and Steel Research, 2023, 35(11): 1384-1393. (张帅, 任毅, 王爽, 等. 控轧控冷工艺对海洋高应变管线钢性能和组织的影响[J]. 钢铁研究学报, 2023, 35(11): 1384-1393.ZHANG S, REN Y, WANG S, et al. Effect of thermo-mechanical control process on properties and microstructure of high strain submarine pipeline steel[J]. Journal of Iron and Steel Research, 2023, 35(11): 1384-1393. [17] GAO P, GAO Y, CHEN J, et al. Effect of tempering temperature on microstructure and properties of 1000 MPa high strength steel produced by DQ process[J]. Heat Treatment of Metals, 2019, 44(10): 72-76. (高朋, 高野, 陈俊, 等. 回火温度对DQ工艺1000 MPa级高强钢组织及性能的影响[J]. 金属热处理, 2019, 44(10): 72-76.GAO P, GAO Y, CHEN J, et al. Effect of tempering temperature on microstructure and properties of 1000 MPa high strength steel produced by DQ process[J]. Heat Treatment of Metals, 2019, 44(10): 72-76. [18] KITAHARA H, UEJI R, TSUJI N, et al. Crystallographic features of lath martensite in low-carbon steel[J]. Acta Materialia, 2006, 54(5): 1279-1288. doi: 10.1016/j.actamat.2005.11.001 [19] XU F, SUN Q, MENG J W. Effect of solution treatment temperature on microstructure and properties of ultra-low carbon 15-5PH precipitation hardened stainless steel[J]. Heat Treatment of Metals, 2024, 49(8): 124-129. (徐锋, 孙强, 孟吉炜. 固溶温度对超低碳15-5PH沉淀硬化不锈钢组织和性能的影响[J]. 金属热处理, 2024, 49(8): 124-129.XU F, SUN Q, MENG J W. Effect of solution treatment temperature on microstructure and properties of ultra-low carbon 15-5PH precipitation hardened stainless steel[J]. Heat Treatment of Metals, 2024, 49(8): 124-129. [20] ZHANG X G, MIYAMOTO G, TOJI Y, et al. Orientation of austenite reverted from martensite in Fe-2Mn-1.5Si-0.3C alloy[J]. Acta Materialia, 2018, 144: 601-612. doi: 10.1016/j.actamat.2017.11.003 -
下载: