中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弛豫时间对薄规格450 MPa级高强钢微观组织和性能的影响

韩楚菲 董毅 时晓光 孙成钱 王俊雄 李智 徐海健

韩楚菲, 董毅, 时晓光, 孙成钱, 王俊雄, 李智, 徐海健. 弛豫时间对薄规格450 MPa级高强钢微观组织和性能的影响[J]. 钢铁钒钛, 2025, 46(6): 186-190, 200. doi: 10.7513/j.issn.1004-7638.2025.06.023
引用本文: 韩楚菲, 董毅, 时晓光, 孙成钱, 王俊雄, 李智, 徐海健. 弛豫时间对薄规格450 MPa级高强钢微观组织和性能的影响[J]. 钢铁钒钛, 2025, 46(6): 186-190, 200. doi: 10.7513/j.issn.1004-7638.2025.06.023
HAN Chufei, DONG Yi, SHI Xiaoguang, SUN Chengqian, WANG Junxiong, LI Zhi, XU Haijian. The influence of relaxation time on the microstructure and properties of thin-gauge 450 MPa grade high-strength steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 186-190, 200. doi: 10.7513/j.issn.1004-7638.2025.06.023
Citation: HAN Chufei, DONG Yi, SHI Xiaoguang, SUN Chengqian, WANG Junxiong, LI Zhi, XU Haijian. The influence of relaxation time on the microstructure and properties of thin-gauge 450 MPa grade high-strength steel[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 186-190, 200. doi: 10.7513/j.issn.1004-7638.2025.06.023

弛豫时间对薄规格450 MPa级高强钢微观组织和性能的影响

doi: 10.7513/j.issn.1004-7638.2025.06.023
详细信息
    作者简介:

    韩楚菲,1991年出生,女,高级工程师,从事先进钢铁结构材料的研究,E-mail: chufeihan@ansteel.com.cn

    通讯作者:

    徐海健,1987年出生,男,正高级工程师,从事先进钢铁结构材料的研究, E-mail:haijianxu2013@163.com

  • 中图分类号: TF76,TG142

The influence of relaxation time on the microstructure and properties of thin-gauge 450 MPa grade high-strength steel

  • 摘要: 采用室温拉伸、-20 ℃时CVN冲击、-15 ℃时DWTT落锤撕裂试验等力学性能测试方法和光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)等显微组织分析手段,研究了轧后驰豫时间0、30、60、75 s对薄规格450 MPa级高强钢微观组织和力学性能的影响。试验结果表明,随着弛豫时间延长,多边形铁素体(PF)尺寸逐渐长大、比例逐渐增加,晶粒内部富Nb、Ti纳米碳氮化物析出量呈现先增加后减少的趋势,屈服强度、抗拉强度、断后伸长率和-20 ℃下的冲击功和-15 ℃的DWTT呈现先升高后降低的趋势,屈强比先降低后升高,驰豫时间为60s时能够获得较高的强韧性和低屈强比,可满足工程结构用钢的技术要求。
  • 图  1  钢板控轧和控冷工艺示意

    Figure  1.  Sketch diagrarm of controlled rolling and cooling used in this experiment

    图  2  不同驰豫时间下450 MPa级微合金钢金相组织

    Figure  2.  Metallographic structure of 450 MPa grade microalloyed steel obtained under different relaxation times

    (a) 0 s; (b) 30 s; (c) 60 s; (d) 75 s

    图  3  不同驰豫时间下450 MPa级微合金钢SEM形貌

    Figure  3.  SEM morphologies of 450 MPa grade microalloyed steel obtained under different relaxation times

    (a) 0 s; (b) 30 s; (c) 60 s; (d) 75 s

    图  4  不同驰豫时间下450 MPa级微合金钢析出相形貌

    Figure  4.  Morphology of precipitates in 450 MPa grade microalloyed steels obtained under different relaxation times

    (a) 0 s; (b) 30 s; (c) 60 s; (d) 75 s

    图  5  不同驰豫时间下450 MPa级微合金钢析出相尺寸分布

    Figure  5.  Diameter distribution of precipitates in 450 MPa grade microalloyed steels obtained under different relaxation times

    图  6  试验钢中不同尺寸析出相的EDS能谱

    (a) 富Nb碳氮化物; (b) 富Ti的碳氮化物

    Figure  6.  EDS energy spectrum of precipitated phases of different sizes in test steel

    表  1  450 MPa级微合金钢化学成分

    Table  1.   Chemical composition of 450 MPa grade microalloyed steel %

    CSiMnPSCrTiNbN
    0.06~0.080.12~0.31.55~1.7≤0.015≤0.0100.07~0.130.001~0.00150.03~0.05≤0.010
    下载: 导出CSV

    表  2  不同驰豫时间下450 MPa级微合金钢力学性能对比

    Table  2.   Comparison of mechanical properties of 460 MPa grade microalloyed steels obtained under different relaxation times

    Relaxation
    time/s
    Rp0.2/MPa Rm/MPa -20 ℃
    Akv2/J
    -10 ℃
    DWTT/%
    Elongation/% Yield
    ratio
    0 455 562 199 85 21.2 0.81
    30 467 591 231 90 23.6 0.79
    60 481 622 262 98 25.1 0.77
    75 445 551 211 70 20.1 0.81
    Technical
    agreement
    450~
    530
    535~
    635
    ≥150 ≥85 ≥18 ≤0.90
    下载: 导出CSV
  • [1] ZHENG L, FU J Y. Recent development of high performance pipeline steel[J]. Iron and Steel, 2006, 41(10): 1-10. (郑磊, 付俊岩. 高等级管线钢的发展现状[J]. 钢铁, 2006, 41(10): 1-10. doi: 10.13228/j.boyuan.issn0449-749x.2006.10.001

    ZHENG L, FU J Y. Recent development of high performance pipeline steel[J]. Iron and Steel, 2006, 41(10): 1-10. doi: 10.13228/j.boyuan.issn0449-749x.2006.10.001
    [2] QIU S J, YAN J H, TANG H, et al. Study on microstructure and properties of 460 MPa grade fire and weather resistant building steel[J]. Hot Working Technology, 2024, 53(16): 129-133. (裘韶均, 闫江辉, 唐辉, 等. 460 MPa级耐火耐候建筑用钢的组织和性能研究[J]. 热加工工艺, 2024, 53(16): 129-133. doi: 10.14158/j.cnki.1001-3814.20221979

    QIU S J, YAN J H, TANG H, et al. Study on microstructure and properties of 460 MPa grade fire and weather resistant building steel[J]. Hot Working Technology, 2024, 53(16): 129-133. doi: 10.14158/j.cnki.1001-3814.20221979
    [3] XU Z G, WANG X N, LIAN B J, et al. Research on the hot deformation behavior of hot-rolled 780 MPa ultra-high strength beam steel[J]. Steel Rolling, 2012, 5(2): 5-9. (徐兆国, 王晓南, 梁冰洁, 等. 热轧780 MPa级超高强大梁钢的热变形行为研究[J]. 轧钢, 2012, 5(2): 5-9. doi: 10.3969/j.issn.1003-9996.2012.05.002

    XU Z G, WANG X N, LIAN B J, et al. Research on the hot deformation behavior of hot-rolled 780 MPa ultra-high strength beam steel[J]. Steel Rolling, 2012, 5(2): 5-9. doi: 10.3969/j.issn.1003-9996.2012.05.002
    [4] SHANMUUGAM S, MISRA R D K, HARTMANN J, et al. Microstructure of high strength niobium-containing pipeline steel[J]. Materials Science and Engineering A, 2006, 441(1-2): 215-229. doi: 10.1016/j.msea.2006.08.017
    [5] QIU J A, WU K M, LI J H, et al. Effect of silicon on ultra-low temperature toughness of Nb-Ti microalloyed cryogenicpressure vessel steels[J]. Materials Characterization, 2013, 83: 123-128. doi: 10.1016/j.matchar.2013.06.013
    [6] HU J, DU L X, WANG J J. Effect of cooling procedure on microstructures and mechanical properties of hot rolled Nb-Ti bainitic high strength steel[J]. Materials Science and Engineering A, 2012, 554: 79-85.
    [7] WANG Q M, LIU Y X. Effect of relaxation time after finishing rolling on YS-UTS ratio of Q345GJC steel plate for high-rise building[J]. Special steel, 2009, 30(3): 66-68. (王庆敏, 刘应心. 热轧后弛豫时间对Q345GJC高层建筑用钢板屈强比的影响[J]. 特殊钢, 2009, 30(3): 66-68.

    WANG Q M, LIU Y X. Effect of relaxation time after finishing rolling on YS-UTS ratio of Q345GJC steel plate for high-rise building[J]. Special steel, 2009, 30(3): 66-68.
    [8] ZHANG L N, QI L, XIAO H Y. Effects of relaxation time on microstructure and mechanical properties of X100 pipeline steel[J]. Materials and Mechanical Engineering, 2015, 39(3): 16-21. (张丽娜, 齐亮, 肖鸿雁. 弛豫时间对X100管线钢组织和力学性能的影响[J]. 机械工程材料, 2015, 39(3): 16-21.

    ZHANG L N, QI L, XIAO H Y. Effects of relaxation time on microstructure and mechanical properties of X100 pipeline steel[J]. Materials and Mechanical Engineering, 2015, 39(3): 16-21.
    [9] HU L J, SHANG C J, WANG X M, et al. Effect of cooling rate on microstructure in relaxation-precipitation controlled phase transformation technology[J]. Journal of University of Science and Technology Beijing, 2004, 26(3): 260-263. (胡良均, 尚成嘉, 王学敏, 等. 弛豫-析出-控制相变技术中冷却速度对组织的影响[J]. 北京科技大学学报, 2004, 26(3): 260-263. doi: 10.3321/j.issn:1001-053X.2004.03.009

    HU L J, SHANG C J, WANG X M, et al. Effect of cooling rate on microstructure in relaxation-precipitation controlled phase transformation technology[J]. Journal of University of Science and Technology Beijing, 2004, 26(3): 260-263. doi: 10.3321/j.issn:1001-053X.2004.03.009
    [10] ZHENG X F, KANG Y L, MENG D L, et al. Effects of finish rolling temperature on the microstructure and mechanical properties of X80 high deformability pipeline steel[J]. Journal of University of Science and Technology Beijing, 2011, 33(5): 557-562. (郑晓飞, 康永林, 孟德亮, 等. 终轧温度对X80抗大变形管线钢组织性能的影响[J]. 北京科技大学学报, 2011, 33(5): 557-562.

    ZHENG X F, KANG Y L, MENG D L, et al. Effects of finish rolling temperature on the microstructure and mechanical properties of X80 high deformability pipeline steel[J]. Journal of University of Science and Technology Beijing, 2011, 33(5): 557-562.
    [11] ZHAO L Y, ZHANG Z J, SHI X B, et al. Microstructure and mechanical property of X70 grade high deformability pipeline steel[J]. Iron and Steel, 2013, 48(7): 65-69. (赵连玉, 张志军, 史显波, 等. X70级抗大变形管线钢的组织与性能[J]. 钢铁, 2013, 48(7): 65-69.

    ZHAO L Y, ZHANG Z J, SHI X B, et al. Microstructure and mechanical property of X70 grade high deformability pipeline steel[J]. Iron and Steel, 2013, 48(7): 65-69.
    [12] HAN C L, HUANG L Q, DONG Z B, et al. Effect of molybdenum contents and cooling processes subsequent to hot-rolling on microstructure and mechanical properties of Q500qE bridge steel plate[J]. Shanghai Metals, 2022, 44(5): 55-59. (韩承良, 黄乐庆, 董占斌, 等. 钼含量和热轧后的冷却工艺对Q500qE桥梁钢板组织和力学性能的影响[J]. 上海金属, 2022, 44(5): 55-59. doi: 10.19947/j.issn.1001-7208.2022.05.010

    HAN C L, HUANG L Q, DONG Z B, et al. Effect of molybdenum contents and cooling processes subsequent to hot-rolling on microstructure and mechanical properties of Q500qE bridge steel plate[J]. Shanghai Metals, 2022, 44(5): 55-59. doi: 10.19947/j.issn.1001-7208.2022.05.010
    [13] WANG C Y, HONG X L, YANG L, et al. Low temperature mechanical properties of 460 MPa polar ship steel and its welded joints[J]. China Metallurgy, 2024, 34(7): 58-67. (王超逸, 洪晓莉, 严玲, 等. 460 MPa极地船舶用钢及焊接接头低温力学性能[J]. 中国冶金, 2024, 34(7): 58-67.

    WANG C Y, HONG X L, YANG L, et al. Low temperature mechanical properties of 460 MPa polar ship steel and its welded joints[J]. China Metallurgy, 2024, 34(7): 58-67.
    [14] YU Q B, LIU X H, WANG G D. The effect of delay time after hot rolling on the grain size of ferrite[J]. ISIJ International, 2004, 44(4): 710-715.
    [15] HUO X D, XIA J N, LI L J, et al. Research and development of titanium microalloyed high strength steel[J]. Iron Steel Vanadium Titanium, 2017, 38(4): 105-112. (霍向东, 夏继年, 李烈军, 等. 钛微合金化高强钢的研究与发展[J]. 钢铁钒钛, 2017, 38(4): 105-112. doi: 10.7513/j.issn.1004-7638.2017.04.019

    HUO X D, XIA J N, LI L J, et al. Research and development of titanium microalloyed high strength steel[J]. Iron Steel Vanadium Titanium, 2017, 38(4): 105-112. doi: 10.7513/j.issn.1004-7638.2017.04.019
    [16] YU Y, HU B, HAO M, et al. Determining role of heteroge neous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28: 816-821.
    [17] KAWATAH H, UMEZAWAO O. Influence of microstructure constituents on ductile to brittle transition behavior in multi phase steel sheets[J]. ISIJ International, 2021, 61(3): 1002-1008. doi: 10.2355/isijinternational.ISIJINT-2020-595
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  12
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-06
  • 录用日期:  2025-09-09
  • 修回日期:  2025-08-25
  • 网络出版日期:  2025-12-31
  • 刊出日期:  2025-12-31

目录

    /

    返回文章
    返回