The influence of relaxation time on the microstructure and properties of thin-gauge 450 MPa grade high-strength steel
-
摘要: 采用室温拉伸、-20 ℃时CVN冲击、-15 ℃时DWTT落锤撕裂试验等力学性能测试方法和光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)等显微组织分析手段,研究了轧后驰豫时间0、30、60、75 s对薄规格450 MPa级高强钢微观组织和力学性能的影响。试验结果表明,随着弛豫时间延长,多边形铁素体(PF)尺寸逐渐长大、比例逐渐增加,晶粒内部富Nb、Ti纳米碳氮化物析出量呈现先增加后减少的趋势,屈服强度、抗拉强度、断后伸长率和-20 ℃下的冲击功和-15 ℃的DWTT呈现先升高后降低的趋势,屈强比先降低后升高,驰豫时间为60s时能够获得较高的强韧性和低屈强比,可满足工程结构用钢的技术要求。Abstract: In this research, the effects of relaxation times varying from 0 s to 75 s after rolling on the microstructure and mechanical properties of thin-gauge 450 MPa grade high-strength steel were studied. The room temperature tensile performance, CVN impact energy at -20 ℃ and DWTT drop hammer test at -15 ℃were performed. The microstructure and precipitates evolution of 450 MPa grade obtained with different relaxation times were observed by using optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The experimental results showed that with the prolongation of relaxation time, the grain size and ratio of PF increased, the volume fraction of Nb/Ti-rich nano carbonitride precipitation firstly increased and decreased, the yield, tensile strength, fracture elongation, -20 ℃ CVN impact energy and -15 ℃ DWTT properties also showed similar trend. While the yield ratio decreased firstly, and then increased. When the relaxation time was 60 s, the higher strength and toughness and the lower yield ration were achieved, those could meet the technical requirements for steel used in engineering structures.
-
Key words:
- precipitates /
- high-strength steel /
- YS-UTS ratio /
- relaxation /
- grain size
-
表 1 450 MPa级微合金钢化学成分
Table 1. Chemical composition of 450 MPa grade microalloyed steel
% C Si Mn P S Cr Ti Nb N 0.06~0.08 0.12~0.3 1.55~1.7 ≤0.015 ≤0.010 0.07~0.13 0.001~ 0.0015 0.03~0.05 ≤0.010 表 2 不同驰豫时间下450 MPa级微合金钢力学性能对比
Table 2. Comparison of mechanical properties of 460 MPa grade microalloyed steels obtained under different relaxation times
Relaxation
time/sRp0.2/MPa Rm/MPa -20 ℃
Akv2/J-10 ℃
DWTT/%Elongation/% Yield
ratio0 455 562 199 85 21.2 0.81 30 467 591 231 90 23.6 0.79 60 481 622 262 98 25.1 0.77 75 445 551 211 70 20.1 0.81 Technical
agreement450~
530535~
635≥150 ≥85 ≥18 ≤0.90 -
[1] ZHENG L, FU J Y. Recent development of high performance pipeline steel[J]. Iron and Steel, 2006, 41(10): 1-10. (郑磊, 付俊岩. 高等级管线钢的发展现状[J]. 钢铁, 2006, 41(10): 1-10. doi: 10.13228/j.boyuan.issn0449-749x.2006.10.001ZHENG L, FU J Y. Recent development of high performance pipeline steel[J]. Iron and Steel, 2006, 41(10): 1-10. doi: 10.13228/j.boyuan.issn0449-749x.2006.10.001 [2] QIU S J, YAN J H, TANG H, et al. Study on microstructure and properties of 460 MPa grade fire and weather resistant building steel[J]. Hot Working Technology, 2024, 53(16): 129-133. (裘韶均, 闫江辉, 唐辉, 等. 460 MPa级耐火耐候建筑用钢的组织和性能研究[J]. 热加工工艺, 2024, 53(16): 129-133. doi: 10.14158/j.cnki.1001-3814.20221979QIU S J, YAN J H, TANG H, et al. Study on microstructure and properties of 460 MPa grade fire and weather resistant building steel[J]. Hot Working Technology, 2024, 53(16): 129-133. doi: 10.14158/j.cnki.1001-3814.20221979 [3] XU Z G, WANG X N, LIAN B J, et al. Research on the hot deformation behavior of hot-rolled 780 MPa ultra-high strength beam steel[J]. Steel Rolling, 2012, 5(2): 5-9. (徐兆国, 王晓南, 梁冰洁, 等. 热轧780 MPa级超高强大梁钢的热变形行为研究[J]. 轧钢, 2012, 5(2): 5-9. doi: 10.3969/j.issn.1003-9996.2012.05.002XU Z G, WANG X N, LIAN B J, et al. Research on the hot deformation behavior of hot-rolled 780 MPa ultra-high strength beam steel[J]. Steel Rolling, 2012, 5(2): 5-9. doi: 10.3969/j.issn.1003-9996.2012.05.002 [4] SHANMUUGAM S, MISRA R D K, HARTMANN J, et al. Microstructure of high strength niobium-containing pipeline steel[J]. Materials Science and Engineering A, 2006, 441(1-2): 215-229. doi: 10.1016/j.msea.2006.08.017 [5] QIU J A, WU K M, LI J H, et al. Effect of silicon on ultra-low temperature toughness of Nb-Ti microalloyed cryogenicpressure vessel steels[J]. Materials Characterization, 2013, 83: 123-128. doi: 10.1016/j.matchar.2013.06.013 [6] HU J, DU L X, WANG J J. Effect of cooling procedure on microstructures and mechanical properties of hot rolled Nb-Ti bainitic high strength steel[J]. Materials Science and Engineering A, 2012, 554: 79-85. [7] WANG Q M, LIU Y X. Effect of relaxation time after finishing rolling on YS-UTS ratio of Q345GJC steel plate for high-rise building[J]. Special steel, 2009, 30(3): 66-68. (王庆敏, 刘应心. 热轧后弛豫时间对Q345GJC高层建筑用钢板屈强比的影响[J]. 特殊钢, 2009, 30(3): 66-68.WANG Q M, LIU Y X. Effect of relaxation time after finishing rolling on YS-UTS ratio of Q345GJC steel plate for high-rise building[J]. Special steel, 2009, 30(3): 66-68. [8] ZHANG L N, QI L, XIAO H Y. Effects of relaxation time on microstructure and mechanical properties of X100 pipeline steel[J]. Materials and Mechanical Engineering, 2015, 39(3): 16-21. (张丽娜, 齐亮, 肖鸿雁. 弛豫时间对X100管线钢组织和力学性能的影响[J]. 机械工程材料, 2015, 39(3): 16-21.ZHANG L N, QI L, XIAO H Y. Effects of relaxation time on microstructure and mechanical properties of X100 pipeline steel[J]. Materials and Mechanical Engineering, 2015, 39(3): 16-21. [9] HU L J, SHANG C J, WANG X M, et al. Effect of cooling rate on microstructure in relaxation-precipitation controlled phase transformation technology[J]. Journal of University of Science and Technology Beijing, 2004, 26(3): 260-263. (胡良均, 尚成嘉, 王学敏, 等. 弛豫-析出-控制相变技术中冷却速度对组织的影响[J]. 北京科技大学学报, 2004, 26(3): 260-263. doi: 10.3321/j.issn:1001-053X.2004.03.009HU L J, SHANG C J, WANG X M, et al. Effect of cooling rate on microstructure in relaxation-precipitation controlled phase transformation technology[J]. Journal of University of Science and Technology Beijing, 2004, 26(3): 260-263. doi: 10.3321/j.issn:1001-053X.2004.03.009 [10] ZHENG X F, KANG Y L, MENG D L, et al. Effects of finish rolling temperature on the microstructure and mechanical properties of X80 high deformability pipeline steel[J]. Journal of University of Science and Technology Beijing, 2011, 33(5): 557-562. (郑晓飞, 康永林, 孟德亮, 等. 终轧温度对X80抗大变形管线钢组织性能的影响[J]. 北京科技大学学报, 2011, 33(5): 557-562.ZHENG X F, KANG Y L, MENG D L, et al. Effects of finish rolling temperature on the microstructure and mechanical properties of X80 high deformability pipeline steel[J]. Journal of University of Science and Technology Beijing, 2011, 33(5): 557-562. [11] ZHAO L Y, ZHANG Z J, SHI X B, et al. Microstructure and mechanical property of X70 grade high deformability pipeline steel[J]. Iron and Steel, 2013, 48(7): 65-69. (赵连玉, 张志军, 史显波, 等. X70级抗大变形管线钢的组织与性能[J]. 钢铁, 2013, 48(7): 65-69.ZHAO L Y, ZHANG Z J, SHI X B, et al. Microstructure and mechanical property of X70 grade high deformability pipeline steel[J]. Iron and Steel, 2013, 48(7): 65-69. [12] HAN C L, HUANG L Q, DONG Z B, et al. Effect of molybdenum contents and cooling processes subsequent to hot-rolling on microstructure and mechanical properties of Q500qE bridge steel plate[J]. Shanghai Metals, 2022, 44(5): 55-59. (韩承良, 黄乐庆, 董占斌, 等. 钼含量和热轧后的冷却工艺对Q500qE桥梁钢板组织和力学性能的影响[J]. 上海金属, 2022, 44(5): 55-59. doi: 10.19947/j.issn.1001-7208.2022.05.010HAN C L, HUANG L Q, DONG Z B, et al. Effect of molybdenum contents and cooling processes subsequent to hot-rolling on microstructure and mechanical properties of Q500qE bridge steel plate[J]. Shanghai Metals, 2022, 44(5): 55-59. doi: 10.19947/j.issn.1001-7208.2022.05.010 [13] WANG C Y, HONG X L, YANG L, et al. Low temperature mechanical properties of 460 MPa polar ship steel and its welded joints[J]. China Metallurgy, 2024, 34(7): 58-67. (王超逸, 洪晓莉, 严玲, 等. 460 MPa极地船舶用钢及焊接接头低温力学性能[J]. 中国冶金, 2024, 34(7): 58-67.WANG C Y, HONG X L, YANG L, et al. Low temperature mechanical properties of 460 MPa polar ship steel and its welded joints[J]. China Metallurgy, 2024, 34(7): 58-67. [14] YU Q B, LIU X H, WANG G D. The effect of delay time after hot rolling on the grain size of ferrite[J]. ISIJ International, 2004, 44(4): 710-715. [15] HUO X D, XIA J N, LI L J, et al. Research and development of titanium microalloyed high strength steel[J]. Iron Steel Vanadium Titanium, 2017, 38(4): 105-112. (霍向东, 夏继年, 李烈军, 等. 钛微合金化高强钢的研究与发展[J]. 钢铁钒钛, 2017, 38(4): 105-112. doi: 10.7513/j.issn.1004-7638.2017.04.019HUO X D, XIA J N, LI L J, et al. Research and development of titanium microalloyed high strength steel[J]. Iron Steel Vanadium Titanium, 2017, 38(4): 105-112. doi: 10.7513/j.issn.1004-7638.2017.04.019 [16] YU Y, HU B, HAO M, et al. Determining role of heteroge neous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28: 816-821. [17] KAWATAH H, UMEZAWAO O. Influence of microstructure constituents on ductile to brittle transition behavior in multi phase steel sheets[J]. ISIJ International, 2021, 61(3): 1002-1008. doi: 10.2355/isijinternational.ISIJINT-2020-595 -
下载: