中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拉速对Fe6.5SixB合金定向退火区和初始过渡区组织及性能影响

董中奇 向星宇 刘雅俊 潘恩宝 孟延军 武晓龙

董中奇, 向星宇, 刘雅俊, 潘恩宝, 孟延军, 武晓龙. 拉速对Fe6.5SixB合金定向退火区和初始过渡区组织及性能影响[J]. 钢铁钒钛, 2025, 46(6): 191-200. doi: 10.7513/j.issn.1004-7638.2025.06.024
引用本文: 董中奇, 向星宇, 刘雅俊, 潘恩宝, 孟延军, 武晓龙. 拉速对Fe6.5SixB合金定向退火区和初始过渡区组织及性能影响[J]. 钢铁钒钛, 2025, 46(6): 191-200. doi: 10.7513/j.issn.1004-7638.2025.06.024
DONG Zhongqi, XIANG Xingyu, LIU YaJun, PAN Enbao, MENG Yanjun, WU Xiaolong. Effect of pulling speed on the organization and performance of the directional annealing zone and the initial transition zone of Fe6.5SixB alloy[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 191-200. doi: 10.7513/j.issn.1004-7638.2025.06.024
Citation: DONG Zhongqi, XIANG Xingyu, LIU YaJun, PAN Enbao, MENG Yanjun, WU Xiaolong. Effect of pulling speed on the organization and performance of the directional annealing zone and the initial transition zone of Fe6.5SixB alloy[J]. IRON STEEL VANADIUM TITANIUM, 2025, 46(6): 191-200. doi: 10.7513/j.issn.1004-7638.2025.06.024

拉速对Fe6.5SixB合金定向退火区和初始过渡区组织及性能影响

doi: 10.7513/j.issn.1004-7638.2025.06.024
基金项目: 石家庄市驻冀高校基础研究项目(241791177A )。
详细信息
    作者简介:

    董中奇,1976年出生,男,汉族,山西阳泉人,博士,教授,研究方向:Fe6.5Si高硅制备研究,E-mail:dongzhongqi@126.com

    通讯作者:

    刘雅俊,1980年出生,男,汉族,湖南永州人,博士,教授,研究方向:高硅钢制备,E-mail:116919374@qq.com

  • 中图分类号: TG111.4,TG142

Effect of pulling speed on the organization and performance of the directional annealing zone and the initial transition zone of Fe6.5SixB alloy

  • 摘要: 采用定向凝固技术制备Fe6.5SixB合金,研究了拉速和B含量对合金定向凝固定向退火区和初始过渡区组织演变以及力学性能和磁性能的影响。采用XRD测定合金组织结构,扫描电镜分析合金显微组织及相组成,高低温振动样品磁强计测定合金磁性能。结果表明,Fe6.5SixB合金定向退火区柱状枝晶平行拉速方向生长,过渡区为大块状晶粒。Fe6.5Si合金定向退火区主要由A2相和(A2+D03)层状组织组成,添加B后定向退火区由A2相和(A2+Fe2B)层片状共晶组织组成。随拉速增加Fe6.5Si合金中(B2+D03)层状组织含量增多,Fe6.5SixB合金中(A2+Fe2B)层状组织变细;合金应变值先增加后降低。随B含量增加Fe6.5SixB合金磁极化强度(Js)和矫顽力呈现降低趋势,剩磁(Jr)呈现增加趋势,合金硬度值降低。
  • 图  1  LMC定向凝固设备和样品位置及温度曲线

    (a) LMC定向凝固设备; (b) 温度曲线

    Figure  1.  The structure sketch of LMC directional solidified equipment and sample location and temperature curve

    图  2  不同拉速Fe6.5Si$x $B合金定向退火区和初始过渡区的金相显微组织

    Figure  2.  Microstructure of Fe6.5Si$x $B alloys with different pulling rates in directional annealing zone and the initial transition zone

    Fe6.5Si: (a1) v=33 μm/s, (a2) v=83 μm/s, (a3) v=167 μm/s; Fe6.5Si0.025B: (b1) v=33 μm/s, (b2) v=83 μm/s, (b3) v=167 μm/s; Fe6.5Si0.04B: (c1) v=33 μm/s, (c2) v=83 μm/s, (c3) v=167 μm/s

    图  3  不同拉速下定向凝固Fe6.5Si$x $B合金粉末X射线衍射图谱

    Figure  3.  X-ray diffraction pattern of Fe6.5Si$x $B alloy powder at different pulling rates

    (a) v=33 μm/s; (b) v=83 μm/s; (c) v=167 μm/s

    图  4  Fe6.5Si$x $B合金定向退火区和初始过渡区的扫描电镜显微组织

    Figure  4.  SEM images of Fe6.5Si$x $B alloy in directional annealing zone and the initial transition zone

     Fe6.5Si: (a1) v=33 μm/s, (a2) v=83 μm/s, (a3) v=167 μm/s;  Fe6.5Si0.025 B: (b1) v=33 μm/s, (b2) v=83 μm/s, (b3) v=167 μm/s; Fe6.5Si0.04B: (c1) v=33 μm/s, (c2) v=83 μm/s, (c3) v=167 μm/s

    图  5  Fe6.5Si合金析出相顺序

    (a) DSC曲线; (b) 样品底部析出相顺序; (c) 样品顶部析出相顺序

    Figure  5.  The sequence of phase precipitation of Fe6.5Si alloy

    图  6  Fe6.5Si$x $B合金析出相顺序

    (a) 样品顶部和底部的宏观形貌; (b) 样品底部析出相顺序; (c) 样品顶部析出相顺序

    Figure  6.  The sequence of phase precipitation of Fe6.5Si$x$B alloy

    图  7  不同B含量Fe6.5Si$x $B合金的磁性能曲线

    Figure  7.  The magnetic property curves of Fe6.5Si$x $B alloys with different B contents

    (a) 33 μm/s; (b) 83 μm/s; (c) 167 μm/s

    图  8  不同拉速${\mathrm{Fe}}6.5{\mathrm{Si}}x{\mathrm{B}} $合金的磁性能曲线

    (a) 拉速-剩磁; (b) 拉速-磁极化强度; (c) 拉速-矫顽力

    Figure  8.  The magnetic property curves of ${\mathrm{Fe}}6.5{\mathrm{Si}}x{\mathrm{B}} $ alloy with different pulling rates

    图  9  ${\mathrm{Fe}}6.5{\mathrm{Si}}x{\mathrm{B}} $合金的力学性能

    (a) 33 μm/s 应力-应变; (b) 83 μm/s 应力-应变; (c) 167 μm/s 应力-应变; (d) 拉速-维氏硬度

    Figure  9.  Mechanical properties of ${\mathrm{Fe}}6.5{\mathrm{Si}}x{\mathrm{B}} $ alloy

    图  10  ${\mathrm{Fe}}6.5{\mathrm{Si}}x{\mathrm{B}} $合金的断口形貌

    Figure  10.  The fracture morphology of the ${\mathrm{Fe}}6.5{\mathrm{Si}}x{\mathrm{B}} $ alloy

    Fe6.5Si:(a1) v=33 mm/s; (a2) v=83 mm/s, (a3) v=167 mm/s; Fe6.5Si0.025B: (b1) v=33 mm/s, (b2) v=83 mm/s, (b3) v=167 mm/s; Fe6.5Si0.04B: (c1) v=33 mm/s, (c2) v=83 mm/s, (c3) v=167 mm/s

    图  11  ${\mathrm{Fe}}6.5{\mathrm{Si}}x{\mathrm{B}} $合金的反相畴界

    Figure  11.  The anti-phase boundary of the ${\mathrm{Fe}}6.5{\mathrm{Si}}x{\mathrm{B}} $ alloy

    (a) Fe6.5Si; (b) Fe6.5Si0.025B; (c) Fe6.5Si0.04B

  • [1] MACKOJIA A Z, TRAN J V, MCKINSTRY M P, et al. Additive manufacturing of Fe-6.5 wt. %Si transformer steel toroidal cores: Process optimization, design aspects, and performance[J]. Materials & Design, 2024, 241: 112883.
    [2] WU F Y, LIU Z H, DONG Y Q, et al. Correlation mechanism of microstructure, magnetic domain, and magnetic softness of Fe-6.5 wt. %Si composites with high saturation[J]. Journal of Superconductivity and Novel Magnetism, 2023, 36(2): 733-743. doi: 10.1007/s10948-023-06519-2
    [3] LIU R X, QI P Y, SUN F L, et al. High magnetic performance ultra-thin Fe-6.5Si ribbons fabricated by planner flow casting and annealing[J]. Journal of Magnetism and Magnetic Materials, 2024, 589: 171538. doi: 10.1016/j.jmmm.2023.171538
    [4] AGAPOVICHEV A V, KHAIMOVICH A I, ERISON Y A, et al. Investigation of soft magnetic material Fe-6.5Si fracture obtained by additive manufacturing[J]. Materials, 2022, 15(24): 8915-8915. doi: 10.3390/ma15248915
    [5] WANG J, LIU X, LI L, et al. Performance improvement of Fe-6.5Si soft magnetic composites with hybrid phosphate-silica insulation coatings[J]. Journal of Central South University, 2021, 28(4): 1266-1278. doi: 10.1007/s11771-021-4694-x
    [6] LIU D, LIU X, WANG J, et al. The influence of Fe nanoparticles on microstructure and magnetic properties of Fe-6.5wt%Si soft magnetic composites[J]. Journal of Alloys and Compounds, 2020, 835: 155215. doi: 10.1016/j.jallcom.2020.155215
    [7] HAN C Y, WEN S B, YE F, et al. Deformation twinning in equiaxed-grained Fe-6.5 wt. %Si alloy after rotary swaging[J]. Journal of Materials Science & Technology, 2020, 49(14): 25-34.
    [8] WANG X. Eutectic transformation mechanism of Fe-B alloy during rapid solidification[D]. Xi’an: Xi’an Technological University, 2020. (汪肖. Fe-B合金快速凝固过程的共晶转变机制研究[D]. 西安: 西安工业大学, 2020.

    WANG X. Eutectic transformation mechanism of Fe-B alloy during rapid solidification[D]. Xi’an: Xi’an Technological University, 2020.
    [9] OHNUMA I, ABE S, SHIMENOUCHI S, et al. Experimental and thermodynamic studies of the Fe–Si binary system[J]. ISIJ International, 2012, 52(4): 540-548. doi: 10.2355/isijinternational.52.540
    [10] LIN J P, YE F, CHEN G L, et al. Fabrication technology, microstructures and properties of Fe-6.5wt. %Si alloy sheets by cold rolling[J]. Frontier Science, 2007(2): 13-26. (林均品, 叶丰, 陈国良, 等. 6.5wt%Si高硅钢冷轧薄板制备工艺、结构和性能[J]. 前沿科学, 2007(2): 13-26.

    LIN J P, YE F, CHEN G L, et al. Fabrication technology, microstructures and properties of Fe-6.5wt. %Si alloy sheets by cold rolling[J]. Frontier Science, 2007(2): 13-26.
    [11] LIU S Z, CHENG Z Y, JIA J, et al. Research progress of inhibitor regulating in grain-oriented silicon steel prepared by short-process[J]. Hot Working Technology, 2024, 53(24): 22-27. (刘四洲, 程朝阳, 贾涓, 等. 短流程制备取向硅钢中抑制剂调控的研究进展[J]. 热加工工艺, 2024, 53(24): 22-27.

    LIU S Z, CHENG Z Y, JIA J, et al. Research progress of inhibitor regulating in grain-oriented silicon steel prepared by short-process[J]. Hot Working Technology, 2024, 53(24): 22-27.
    [12] LI X B, HUANG J J, DONG Y Q, et al. Effect of Ge doping on the magnetic properties of Fe-6.5Si soft magnetic composites[J]. Journal of Materials Research and Technology, 2023, 22: 3050-3057. doi: 10.1016/j.jmrt.2022.12.149
    [13] WEN QY, ZHU J C, LIU J, et al. Effect of warm rolling temperature on microstructure and texture evolution during recrystallization of 6.5%Si high silicon steel[J]. Hot Working Technology, 2024, 53(21): 51-56. (文秋月, 朱家晨, 刘静, 等. 温轧温度对6.5%Si高硅钢再结晶过程中组织及织构演变的影响[J]. 热加工工艺, 2024, 53(21): 51-56.

    WEN QY, ZHU J C, LIU J, et al. Effect of warm rolling temperature on microstructure and texture evolution during recrystallization of 6.5%Si high silicon steel[J]. Hot Working Technology, 2024, 53(21): 51-56.
    [14] WANG L N, HE C X, LI X. Research progress on domain refining technology of grain oriented silicon steel[J]. Hot Working Technology, 2024, 53(2): 6-11. (王丽娜, 何承绪, 李萧. 取向硅钢细化磁畴技术研究进展[J]. 热加工工艺, 2024, 53(2): 6-11.

    WANG L N, HE C X, LI X. Research progress on domain refining technology of grain oriented silicon steel[J]. Hot Working Technology, 2024, 53(2): 6-11.
    [15] FU H D, ZHANG Z H, WU X S, et al. Effects of boron on microstructure and mechanical properties of Fe-6.5 wt. %Si alloy fabricated by directional solidification[J]. Intermetallics, 2013, 35: 67-72. doi: 10.1016/j.intermet.2012.12.005
    [16] SONG H W, LIN D L, SHAN A D, et al. Slip in directionally solidified Fe-6.5%Si alloy during three-point bending at RT[J]. Journal of Shanghai Jiaotong University, 2001 (3): 466-468. (宋洪伟 , 林栋樑, 单爱党, 等. 定向凝固Fe-6.5%Si合金室温三点弯曲过程中的滑移[J]. 上海交通大学学报 , 2001 (3): 466-468.

    SONG H W, LIN D L, SHAN A D, et al. Slip in directionally solidified Fe-6.5%Si alloy during three-point bending at RT[J]. Journal of Shanghai Jiaotong University, 2001 (3): 466-468.
    [17] XIE J X, FU H D, ZHANG Z H, et al. Deformation twinning in an Fe-6.5wt. %Si alloy with columnar grains during intermediate temperature compression[J]. Materials Science and Engineering A, 2012, 538: 315-319. doi: 10.1016/j.msea.2012.01.050
    [18] LI HUI. The evolution of ordering formation and its effect onmechanical properties in Fe-6.5 wt%Si alloy[D]. Beijing: University of Science and Technology Beijing, 2015. (李慧. Fe-6.5wt%Si合金中有序相的形成规律及其对力学性能的影响[D]. 北京: 北京科技大学, 2015.

    LI HUI. The evolution of ordering formation and its effect onmechanical properties in Fe-6.5 wt%Si alloy[D]. Beijing: University of Science and Technology Beijing, 2015.
    [19] SHIN J S, BAE J S, KIM H J, et al. Ordering-disordering phenomena and micro-hardness characteristics of B2 phase in Fe-(5-6.5%)Si alloys[J]. Materials Science and Engineering A, 2005, 407(1-2): 282-290. doi: 10.1016/j.msea.2005.07.012
    [20] POLETTI M G, BATTEZZATI L. Assessment of the ternary Fe-Si-B phase diagram[J]. Calphad, 2013, 43: 40-47. doi: 10.1016/j.calphad.2013.08.001
    [21] TAKAHASH M, KOSHIMURA M, ABUZUKA B T. Phase diagram of amorphous and crystallized Fe-B alloy system[J]. Japanese Journal of Applied Physics, 1981, 20: 1821-1832. doi: 10.1143/JJAP.20.1821
    [22] CHEN X, LI Y X. Microstructure and mechanical properties of a new type of austempered boron alloyed high silicon cast steel[J]. China Foundry, 2013, 10(3): 155-161.
    [23] ZHAO D G, GUO P M, ZHAO P. Activity model of Fe-Si-B ternary metallic melts[J]. Journal of Iron and Steel Research International, 2011, 18(6): 16-21. doi: 10.1016/S1006-706X(11)60071-X
    [24] XU L L, YAN B. Study on the characteristics of over-spray powders of Fe-6.5Si alloy[J]. Shanghai Nonferrous Metals, 2015, 36(4): 157-162. (徐莉莉, 严彪. Fe6.5Si合金过喷粉末特性研究[J]. 上海有色金属, 2015, 36(4): 157-162.

    XU L L, YAN B. Study on the characteristics of over-spray powders of Fe-6.5Si alloy[J]. Shanghai Nonferrous Metals, 2015, 36(4): 157-162.
    [25] XUE T X. Study on plastic deformation behavior and rolling of Fe-6.5Si-2Cr-12Ni alloy at high temperature[D]. Harbin: Harbin Engineering University, 2023. (薛天祥. Fe6.5Si2Cr12Ni合金高温塑性变形行为及轧制成形研究[D]. 哈尔滨: 哈尔滨工程大学, 2023.

    XUE T X. Study on plastic deformation behavior and rolling of Fe-6.5Si-2Cr-12Ni alloy at high temperature[D]. Harbin: Harbin Engineering University, 2023.
    [26] LIANG Y F, GE J W, FANG X S, et al. Hot deformation behavior and softening mechanism of Fe-6.5wt% Si alloy[J]. Materials Science and Engineering A, 2013, 570: 8-12. doi: 10.1016/j.msea.2013.01.070
  • 加载中
图(11)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  12
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-27
  • 录用日期:  2025-06-19
  • 修回日期:  2025-06-16
  • 网络出版日期:  2025-12-31
  • 刊出日期:  2025-12-31

目录

    /

    返回文章
    返回