留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位(W&Ti)C复相颗粒对高铬铸铁磨损行为的影响规律

王帅 李英民 郑志斌 王娟 龙骏 郑开宏 张建 刁晓刚

王帅, 李英民, 郑志斌, 王娟, 龙骏, 郑开宏, 张建, 刁晓刚. 原位(W&Ti)C复相颗粒对高铬铸铁磨损行为的影响规律[J]. 钢铁钒钛, 2023, 44(1): 151-157. doi: 10.7513/j.issn.1004-7638.2023.01.024
引用本文: 王帅, 李英民, 郑志斌, 王娟, 龙骏, 郑开宏, 张建, 刁晓刚. 原位(W&Ti)C复相颗粒对高铬铸铁磨损行为的影响规律[J]. 钢铁钒钛, 2023, 44(1): 151-157. doi: 10.7513/j.issn.1004-7638.2023.01.024
Wang Shuai, Li Yingmin, Zheng Zhibin, Wang Juan, Long Jun, Zheng Kaihong, Zhang Jian, Diao Xiaogang. Effect of in-situ (W&Ti)C complex particles on wear behavior of high chromium cast iron[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 151-157. doi: 10.7513/j.issn.1004-7638.2023.01.024
Citation: Wang Shuai, Li Yingmin, Zheng Zhibin, Wang Juan, Long Jun, Zheng Kaihong, Zhang Jian, Diao Xiaogang. Effect of in-situ (W&Ti)C complex particles on wear behavior of high chromium cast iron[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 151-157. doi: 10.7513/j.issn.1004-7638.2023.01.024

原位(W&Ti)C复相颗粒对高铬铸铁磨损行为的影响规律

doi: 10.7513/j.issn.1004-7638.2023.01.024
基金项目: 国家重点研发计划(2021YFB3701204);广东省科学院发展专项资金项目(2022GDASZH-2022010103,2020GDASYL-20200503001-04);广西重点研发计划项目(桂科AB22035067);广东省科技专项资金项目-江科[2020]182号。
详细信息
    作者简介:

    王帅,1992年出生,男,汉族,辽宁锦州人,博士研究生,主要从事钢铁耐磨蚀方面的研究,E-mail: 18242312911@163.com

    通讯作者:

    郑开宏,1968年出生,男,博士,教授级高级工程师,主要从事金属材料、无机非金属材料及其复合材料成形与加工方面研究,E-mail: 13602721690@163.com

  • 中图分类号: TB331,TF823

Effect of in-situ (W&Ti)C complex particles on wear behavior of high chromium cast iron

  • 摘要: 采用原位法制备出(W&Ti)C复相颗粒增强高铬铸铁基复合材料,研究了增强颗粒对材料显微组织和磨损行为的影响规律。结果表明:与高铬铸铁相比,复合材料显微组织中WC和TiC颗粒的存在使其洛氏硬度(HRC)从55提高到70。在磨损过程中,高铬铸铁靠近磨损表面的M7C3型碳化物在磨料的反复作用下会产生裂纹并向基体内部扩展。破碎的碳化物更容易脱落,无法抵抗磨料对材料表面的犁削作用,从而加速材料的磨损。复合材料中相对较软的基体相在磨损时会逐渐被去除,磨损表面会暴露出大量WC和TiC颗粒。表面凸起的增强颗粒会承受来自磨料的主要破坏作用,进而有效地保护周边的基体材料。对比发现,在相同磨损条件下复合材料的磨损性能提高了1倍以上。
  • 图  1  试验钢的显微组织形貌

    (a)高铬铸铁;(b)复合材料

    Figure  1.  Microstructure of experimental materials

    图  2  复合材料组织形貌及对应的元素分布

    (a)组织形貌;(b)Ti元素;(c)Fe元素;(d)W元素;(e)Cr元素;(f)C元素

    Figure  2.  Microstructure and corresponding element distribution of composites

    图  3  试验钢的洛氏硬度

    Figure  3.  Rockwell hardness of experimental materials

    图  4  试验钢的磨损性能

    (a)磨损率;(b)相对耐磨性

    Figure  4.  Wear performance of the experimental materials

    图  5  试验钢的表面磨损形貌

    (a)高铬铸铁(BSD);(b)高铬铸铁(SE);(c)复合材料富TiC区(BSD);(d)复合材料富TiC区(SE);(e)复合材料富WC区(BSD);(f)复合材料富WC区(SE)

    Figure  5.  Surface wear morphology of experimental materials

    图  6  试验钢的截面磨损形貌

    (a、b)高铬铸铁及局部放大;(c、d)复合材料富WC区及局部放大;(e、f)复合材料富TiC区及局部放大

    Figure  6.  Wear section morphology of experimental materials

    表  1  前驱体的成分配比

    Table  1.   Composition ratio of preform %

    石墨粉Ti粉W粉Fe粉
    9.5226.6743.8120
    下载: 导出CSV

    表  2  高铬铸铁的化学成分

    Table  2.   The chemical compositions of the high chromium cast iron %

    CSiMnCrNiMoSPFe
    3.170.150.3426.960.420.390.020.01余量
    下载: 导出CSV

    表  3  试验钢组织中物相的EDS能谱

    Table  3.   EDS energy spectrum of indicated point in Fig.1 materials

    试验钢元素含量(y/%)
    CSiCrFeMoTiW
    高铬铸铁134.8344.9419.770.46
    225.711.2921.8960.470.64
    332.4248.5218.790.27
    复合材料451.910.3847.71
    548.940.140.1650.76
    下载: 导出CSV
  • [1] 郑志斌, 龙骏, 王玉辉, 等. 孪生诱发塑性钢力学性能的研究进展[J/OL].钢铁研究学报:1-22[2023-02-01].DOI: 10.13228/j.boyuan.issn1001-0963.20220049.

    Zheng Zhibing, Long Jun, Wang Yuhui, et al. Research progress of mechanical properties of twinning induced plasticity steel[J/OL].Journal of Iron and Steel Research: 1-22[2023-02-01].DOI:10.13228/j.boyuan.issn1001-096. 20220049.
    [2] Wang S, Zheng K H, Zheng Z B, et al. Oxidation behaviour and microstructure evolution of Zr-containing steel under continuous high-temperature exposure[J]. Materials Chemistry & Physics, 2022,275:125324.
    [3] Wang S, Li Y M, Wang J, et al. Study on the microstructure and properties of iron-based composites locally reinforced by in-situ submicron TiC particles[J]. Materials Chemistry and Physics, 2022,287:126376. doi: 10.1016/j.matchemphys.2022.126376
    [4] Yang Yi, Zheng Zhibing, Ye Zhiguo, et al. Microstructure and mechanical properties of lightweight high manganese steel[J]. Journal of Iron and Steel Research, 2021,33(11):1189−1197. (杨壹, 郑志斌, 叶志国, 等. 轻质高锰钢的组织及力学性能[J]. 钢铁研究学报, 2021,33(11):1189−1197.
    [5] Zheng Z B, Long J, Guo Y, et al. Corrosion and impact-abrasion-corrosion behaviors of quenching-tempering martensitic Fe-Cr alloy steels[J]. Journal of Iron and Steel Research International, 2022, 29(11)1853-1863.
    [6] Wang F, Zheng X, Long J, et al. Effects of zirconium on the structure and mechanical properties of HSLA steels under quenched or tempered conditions[J]. Steel Research International, 2022:2200352.
    [7] Deng Changguang, Zhang Xiaofeng, Deng Chunming, et al. Failure mechanism of EB-PVD thermal barrier coating on turbine blades in service environment[J]. Materials Research and Application, 2022,16(1):19−28. (邓畅光, 张小峰, 邓春明, 等. 使役环境涡轮叶片EB-PVD热障涂层失效机制[J]. 材料研究与应用, 2022,16(1):19−28.
    [8] Li Zhi, Han Guang, Lu Xianghui, et al. Study on the properties of titanium bearing weather-proof building steel[J]. Iron Steel Vanadium Titanium, 2021,42(2):60−65. (李智, 韩光, 陆向辉, 等. 含钛耐候建筑钢的耐腐蚀和耐磨损性能研究[J]. 钢铁钒钛, 2021,42(2):60−65. doi: 10.7513/j.issn.1004-7638.2021.02.011
    [9] Sudhakar A N, Markandeya R, Srinivasa Rao B, et al. Effect of alloying elements on the microstructure and mechanical properties of high chromium white cast iron and Ni-hard iron[J]. Materials Today:Proceedings, 2022,61(3):1006−1014.
    [10] Riki Hendra Purba, Kazumichi Shimizu, Kenta Kusumoto, et al. Effect of boron addition on three-body abrasive wear characteristics of high chromium based multi-component white cast iron[J]. Materials Chemistry and Physics, 2022,275:125232. doi: 10.1016/j.matchemphys.2021.125232
    [11] Beata Białobrzeska. The influence of boron on the resistance to abrasion of quenched low-alloy steels[J]. Wear, 2022,500-501:20345.
    [12] Chen H, Lu Y Y, Wu K H, et al. Effect of WC addition on TiC reinforced Fe matrix composites produced by laser deposition[J]. Surface & Coatings Technology, 2022,434:128185.
    [13] Gao J, Li T S, Yan Z L, et al. Research on the interface and properties of spherical ZTA particles reinforced Fe-Cr-B matrix composite[J]. Journal of Materials Research and Technology, 2022,19:1322−1331. doi: 10.1016/j.jmrt.2022.05.119
    [14] Dong Xiaorong, Zheng Zhibing, Long Jun, et al. Analysis of domestic patent technology of vanadium-containing cast wear-resistant steel materials[J]. Materials Research and Application, 2022,16(5):766−775. (董晓蓉, 郑志斌, 龙骏, 等. 含钒铸造耐磨钢铁材料国内专利技术分析[J]. 材料研究与应用, 2022,16(5):766−775.
    [15] Li C, Goei Ronn, Li Y F, et al. Fabrication and wear property of NiCo coated ZrO2-Al2O3 ceramic particles reinforced high manganese steel-based composites[J]. Wear, 2022,492-493:204235. doi: 10.1016/j.wear.2022.204235
    [16] Wang S, Li Y M, Wang J, et al. Effect of sintering temperature on the microstructure and properties of Ti/W-C reinforced Fe-based composites[J]. Vacuum, 2021,194:110617.
    [17] Chang Cheng, Yan Xingchen, Gardan Julien, et al. Exploration on the microstructure and mechanical properties of the selective laser melted nano-WC/CX steel[J]. Materials Research and Application, 2021,4:309−317. (常成, 闫星辰, Gardan Julien, 等. 激光选区熔化成形nano-WC/CX钢微观组织及机械性能初探[J]. 材料研究与应用, 2021,4:309−317.
    [18] Li C, Li Y F, Shi J, et al. Interfacial characterization and erosive wear performance of zirconia toughened alumina ceramics particles reinforced high chromium white cast irons composites[J]. Tribology International, 2022,165:107262.
    [19] Li J, Qiu H, Zhang X F, et al. Effects of (Ti, Mo) C particles on the abrasive wear-corrosion of low alloy martensitic steel[J]. Wear, 2022,496-497:204288.
    [20] Wang Tao, Hu Feng, Zhou Wen, et al. Effect of impact load on wear resistance of 10Mn steel and analysis of wear resistance mechanism[J]. Journal of Iron and Steel Research, 2022,34(5):478−488. (王涛, 胡峰, 周雯, 等. 冲击载荷对10Mn钢磨损性能的影响及耐磨机制分析[J]. 钢铁研究学报, 2022,34(5):478−488.
    [21] Zou Y M, Tan C L, Qiu Z G, et al. Additively manufactured SiC - reinforced stainless steel with excellent strength and wear resistance[J]. Additive Manufacturing, 2021,41:101971.
    [22] Chen H Y, Gu D D, Zhang H M, et al. Novel WC reinforced iron - based composites with excellent mechanical properties synthesized by laser additive manufacturing: Underlying role of reinforcement weight fraction[J]. Journal of Materials Processing Technology, 2021,289:116959.
    [23] Zhu H M, Ouyang Mengna , Hu J P, et al. Design and development of TiC-reinforced 410 martensitic stainless steel coatings fabricated by laser cladding[J]. Ceramics International, 2021,47(9):12505−12513. doi: 10.1016/j.ceramint.2021.01.108
    [24] Li J F, Zhu Z C, Peng Y X, et al. Phase evolution and wear resistance of in-situ synthesized (Cr, W)23C6-WC composite ceramics reinforced Fe – based composite coatings produced by laser cladding[J]. Vacuum, 2021:110242.
    [25] Morteza Narvan, Ali Ghasemi, Eskandar Fereiduni, et al. Laser powder bed fusion of functionally graded bi-materials: Role of VC on functionalizing AISI H13 tool steel[J]. Materials & Design, 2021,201:109503.
    [26] Olejnik E, Szymański Ł, Batóg P, et al. TiC-FeCr local composite reinforcements obtained in situ in steel casting[J]. Journal of Materials Processing Technology, 2020,275:116157.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  38
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-09
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回