Volume 44 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
Wang Zhenling, Yu Yucheng, Han Jiaping, Peng Hao. Research on hot deformation behaviors of short-time high temperature titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 38-43. doi: 10.7513/j.issn.1004-7638.2023.01.008
Citation: Wang Zhenling, Yu Yucheng, Han Jiaping, Peng Hao. Research on hot deformation behaviors of short-time high temperature titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(1): 38-43. doi: 10.7513/j.issn.1004-7638.2023.01.008

Research on hot deformation behaviors of short-time high temperature titanium alloy

doi: 10.7513/j.issn.1004-7638.2023.01.008
  • Received Date: 2022-06-28
  • Publish Date: 2023-02-28
  • The thermal simulation test was carried out and high temperature deformation behavior of the as-cast Ti-6Al-4Sn-8Zr-0.8Mo-1.5Nb-1W-0.25Si short-time high temperature titanium alloy was studied. The experimental results show that the deformation of Ti-6Al-4Sn-8Zr-0.8Mo-1.5Nb-1W-0.25Si alloy is sensitive to the deformation temperature and deformation rate, and the true stress decreases significantly with the decrease of strain rate and the increase of deformation temperature. The hot working diagram was plotted using the high temperature compression stress-strain data. The analysis results demonstrate that 900-960 ℃, 0.035-0.368 s−1 and 960-1 010 ℃, 0.165-0.577 s−1 in the (α+β) phase region as well as 1010-1020 ℃, 0.165-1 s−1 of β phase region are the most suitable regions for hot processing. The thermal deformation activation energy of (α+β) two-phase region is calculated to be 316.229 kJ/mol, and the constitutive equation of the region is established as well.
  • loading
  • [1]
    Zhao Yongqing. Study on high temperature titanium alloy[J]. Titanium Industry Progress, 2001,(1):33−39. (赵永庆. 高温钛合金研究[J]. 钛工业进展, 2001,(1):33−39. doi: 10.3969/j.issn.1009-9964.2001.01.013
    [2]
    Ren Pengli. Application and development prospect of high temperature titanium alloy[J]. Advanced Materials Industry, 2014,(3):56−58. (任朋立. 高温钛合金的应用及其发展前景[J]. 新材料产业, 2014,(3):56−58. doi: 10.3969/j.issn.1008-892X.2014.03.014
    [3]
    叶园. Zr 含量对650 ℃短时高温钛合金显微组织和力学性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2020: 61.

    Ye Yuan. Effect of Zr content on microstructure and mechanical properties of high temperature titanium alloys for short-term used at 650 ℃[D]. Harbin: Harbin Institute of Technology, 2020: 61. )
    [4]
    郑壮壮. 纳米 Y2O3 增强高温钛合金热变形行为及板材组织性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 71.

    Zheng Zhuangzhuang. Study on thermal deformation behavior and microstructure and properties of sheet of high temperature titanium alloy reinforced by nano-Y2O3[D]. Harbin: Harbin Institute of Technology, 2019: 71.
    [5]
    Wang Zhenling, Yu Yucheng, Li Ruizhi, et al. Microstructure and high temperature tensile properties of (TiC+TiB) reinforced titanium matrix composites by vacuum induction suspension melting[J]. Iron Steel Vanadium Titnaium, 2021,45(5):54−61. (王振玲, 于玉城, 李睿智, 等. 真空感应悬浮熔炼(TiC+TiB)增强钛基复合材料组织及高温拉伸性能研究[J]. 钢铁钒钛, 2021,45(5):54−61.
    [6]
    Zeng W D, Shu Y, Zhang X M. Hot workability and microstructure evolution of highly β stabilised Ti-25V-15Cr-0.3Si alloy[J]. Materials Science and Technology, 2008,24:1222−1229. doi: 10.1179/174328407X185884
    [7]
    Huang L J, Geng L, Li A B, et al. Characteristics of hot compression behavior of Ti-6.5A1-3.5Mo-1.5Zr-0.3Si alloy with an equiaxed microstructure[J]. Materials Science and Engineering A, 2009,505:136−143. doi: 10.1016/j.msea.2008.12.041
    [8]
    Jonas J J, Sellars C M, Tegart W J M. Strength and structure under hot-working. conditions[J]. Metallurgical Reviews, 1969,14(1):1−24. doi: 10.1179/mtlr.1969.14.1.1
    [9]
    Quan G Z, Wen H R, Jia P, et al. Construction of processing maps based on expanded data by BP-ANN and identification of optical deforming parameters for Ti-6Al-4V alloy[J]. Int. J. Precis. Eng. Manuf., 2016,17(2):171−180. doi: 10.1007/s12541-016-0022-z
    [10]
    Wang Y, Liu D L, Lay C C. A correlation between tensile flow stress and Zenner-Hollomon factor in TiAl alloys at high temperatures[J]. Journal of Materials Science Letters, 2000,19:1185−1188. doi: 10.1023/A:1006723629430
    [11]
    Prasad Y V R K. Author’s reply: Dynamic materials model: Basis and principles[J]. Metallurgical and Materials Transactions A, 1996,27:235−236. doi: 10.1007/BF02647765
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (207) PDF downloads(157) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return