Study on microalloying and heat treatment process of spring steel 55SiCrV
-
摘要: 在弹簧钢55SiCr成分基础上进行钒微合金化处理,获得了55SiCrV,通过淬火+回火正交试验、显微组织观察、力学性能测试和X射线衍射等手段,研究并分析了淬火+回火工艺对弹簧钢55SiCrV微观组织和力学性能的影响,结果表明:0.20%V的添加可使55SiCrV组织中存在大量弥散均匀分布的10~35 nm含钒析出相,强化效果最佳。淬火+回火处理可以改变55SiCrV的显微组织比例,其中的残余奥氏体可以降低强度和增加塑性,55SiCrV获得最佳力学性能匹配(Rm=1 815 MPa、Z=28%)的热处理工艺为900 ℃淬火+430 ℃回火,对应其残余奥氏体含量为2.3%。Abstract: In this paper 55SiCrV steel was obtained by V microalloying based on the composition of 55SiCr spring steel, the effect of heat treatment on the microstructure and mechanical properties of 55SiCrV was studied by means of orthogonal test of quenching and tempering, microstructure observation, mechanical properties test and X-ray diffraction. The experimental results show that there are a large number of 10 ~ 35 nm vanadium containing precipitates in the microstructure of 55SiCrV (0.20% V), and the corresponding strengthening effect is the best. Quenching and tempering processes can change the microstructure proportion of 55SiCrV, in which retained austenite can reduce the strength and increase the plasticity, the best matching of mechanical properties (Rm=1 815 MPa, Z=28%) of 55SiCrV is obtained by following process combination o f quenching at 900 ℃ and tempering at 430 ℃, and the content of resulted retained austenite is 2.3%.
-
Key words:
- spring steel /
- 55SiCrV /
- microalloying /
- quenching /
- tempering /
- mechanical properties
-
表 1 试样主要化学成分
Table 1. Main chemical constituents of samples
% 编号 C Si Mn Cr V 1# 0.59 1.44 0.80 0.70 0 2# 0.56 1.42 0.75 0.69 0.06 3# 0.56 1.38 0.76 0.70 0.11 4# 0.56 1.44 0.78 0.71 0.16 5# 0.56 1.40 0.73 0.69 0.19 6# 0.56 1.40 0.74 0.70 0.25 7# 0.56 1.41 0.76 0.71 0.29 表 2 55SiCrV试验钢轧制工艺参数
Table 2. Rolling process parametersof tested steel 55SiCrV
加热温度/℃ 开轧温度/℃ 终轧温度/℃ 1150±20 1050±20 950±50 表 3 热处理工艺及试验编号
Table 3. Heat treatment processes and their test number
编号 加热温度/℃ 回火工艺 温度/℃ 时间/min 1-1# 850 430 30 1-2# 850 450 30 2-1# 900 430 30 2-2# 900 450 30 3-1# 950 430 30 3-2# 950 450 30 3-3# 950 430 60 3-4# 950 450 60 4-1# 1000 430 30 4-2# 1000 450 30 表 4 试验钢残余奥氏体含量
Table 4. Retained austenite content of tested steels
编号 加热温度/℃ 回火工艺 残余奥氏体含量/% 温度/℃ 时间/min 1-1# 850 430 30 3.6 1-2# 850 450 30 3.0 2-1# 900 430 30 2.3 2-2# 900 450 30 4.6 3-1# 950 430 30 4.8 3-2# 950 450 30 5.4 3-3# 950 430 60 5.1 3-4# 950 450 60 5.0 4-1# 1000 430 30 4.3 4-2# 1000 450 30 2.9 表 5 试验钢力学性能测试结果
Table 5. Mechanical properties of tested steels
编号 加热温度/℃ 回火工艺 Rm/MPa Z/% 温度/℃ 时间/min 1-1# 850 430 30 1 867 13 1-2# 850 450 30 1728 17 2-1# 900 430 30 1 815 28 2-2# 900 450 30 1739 17 3-1# 950 430 30 1 805 17 3-2# 950 450 30 1695 30 3-3# 950 430 60 1723 17 3-4# 950 450 60 1620 24 4-1# 1000 430 30 1694 28 4-2# 1000 450 30 1685 29 -
[1] (文波. 碳化钒在Fe-C-V微合金钢中的析出行为研究[D]. 重庆: 重庆大学, 2011.)Wen Bo. Precipitation behavior of vanadium carbide in Fe-C-V microalloyed steel[D]. Chongqing: Chongqing University, 2011. [2] Hong Guohua, Yang Shunhu, Xiao Bo, et al. Production status and development prospect of spring steel at home and abroad[J]. Modern Metallurgy, 2009,(1):10−13. (洪国华, 杨顺虎, 肖波, 等. 国内外弹簧钢的生产现状和发展前景[J]. 现代冶金, 2009,(1):10−13. [3] Lu Jun, Zeng Yu, Zhang Chi, et al. Research progress of steel for automotive engine valve spring[J]. Journal of Iron and Steel Research, 2008,(11):5−9, 18. (卢俊, 曾渝, 张弛, 等. 汽车发动机气门弹簧用钢研究进展[J]. 钢铁研究学报, 2008,(11):5−9, 18. [4] Zhang Zhonghua, Wan Genjie, Cai Haiyan, et al. Development of 55SiCrV high strength spring steel wire[J]. Metal Products, 2006,(1):43−45. (张忠铧, 万根节, 蔡海燕, 等. 55SiCrV高强度弹簧钢线材的开发[J]. 金属制品, 2006,(1):43−45. doi: 10.3969/j.issn.1003-4226.2006.01.017 [5] Ke Xiaotao, Lu Xiangyang. Effect of vanadium on relaxation resistance of Si Mn spring steel[J]. Special Steel, 2007,28(6):4−6. (柯晓涛, 卢向阳. 钒对Si-Mn系弹簧钢松弛抗力的影响[J]. 特殊钢, 2007,28(6):4−6. doi: 10.3969/j.issn.1003-8620.2007.06.002 [6] Ma Mingtu, Li Zhigang, Lu Xiangyang. Effect of vanadium on decarburization sensitivity of 35Si MnB spring steel[J]. Special Steel, 2001,(5):11−13. (马鸣图, 李志刚, 卢向阳. 钒对35Si MnB弹簧钢脱碳敏感性的影响[J]. 特殊钢, 2001,(5):11−13. [7] Xu Dexiang, Yin Zhongda. High strength of spring steel and effect of alloying elements[J]. Metal Heat Treatment, 2003,28(12):30−36. (徐德祥, 尹锺大. 弹簧钢高强度化及合金元素的作用[J]. 金属热处理, 2003,28(12):30−36. doi: 10.3969/j.issn.0254-6051.2003.12.010 [8] Xie Yuanlin. Alloying effect and application of vanadium in steel[J]. Special Steel Technology, 2015,(1):1−5. (谢元林. 钒在钢中的合金化作用及应用[J]. 特钢技术, 2015,(1):1−5. doi: 10.3969/j.issn.1674-0971.2015.01.001 [9] (崔娟, 刘雅政, 黄学启. 控轧控冷工艺对含钒弹簧钢组织性能的影响[C]//2007中国钢铁年会论文集. 2007.)Cui Juan, Liu Yazheng, Huang Xueqi. Effect of controlled rolling and controlled cooling process on microstructure and properties of spring steel containing vanadium[C]//Proceedings of 2007 China Steel Annual Conference. 2007. [10] Jiang Ting, Wang Kaizhong, Yu Tongren, et al. Effect of heat treatment process on mechanical properties and microstructure of 55SiCrV spring steel[J]. Metal Heat Treatment, 2019,44(10):96−98. (姜婷, 汪开忠, 于同仁, 等. 热处理工艺对弹簧钢 55SiCrV力学性能和组织的影响[J]. 金属热处理, 2019,44(10):96−98.