中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米磷酸钒钠的制备及其储钠性能研究

张东彬 袁欣然 辛亚男 毕新强 刘天豪 韩慧果 杜光超 滕艾均

张东彬, 袁欣然, 辛亚男, 毕新强, 刘天豪, 韩慧果, 杜光超, 滕艾均. 纳米磷酸钒钠的制备及其储钠性能研究[J]. 钢铁钒钛, 2024, 45(1): 12-18. doi: 10.7513/j.issn.1004-7638.2024.01.003
引用本文: 张东彬, 袁欣然, 辛亚男, 毕新强, 刘天豪, 韩慧果, 杜光超, 滕艾均. 纳米磷酸钒钠的制备及其储钠性能研究[J]. 钢铁钒钛, 2024, 45(1): 12-18. doi: 10.7513/j.issn.1004-7638.2024.01.003
Zhang Dongbin, Yuan Xinran, Xin Yanan, Bi Xinqiang, Liu Tianhao, Han Huiguo, Du Guangchao, Teng Aijun. Research on preparation of nano sodium vanadium phosphate and its sodium storage properties[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 12-18. doi: 10.7513/j.issn.1004-7638.2024.01.003
Citation: Zhang Dongbin, Yuan Xinran, Xin Yanan, Bi Xinqiang, Liu Tianhao, Han Huiguo, Du Guangchao, Teng Aijun. Research on preparation of nano sodium vanadium phosphate and its sodium storage properties[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 12-18. doi: 10.7513/j.issn.1004-7638.2024.01.003

纳米磷酸钒钠的制备及其储钠性能研究

doi: 10.7513/j.issn.1004-7638.2024.01.003
基金项目: 国家重点研发课题(储能电池用钒基正极材料及高浓度全钒电解液制备技术,编号:2023YFC2908305);国家重点研发课题(钒铬中间体可控还原短程制备高附加值产品技术,编号:2022YFC3901004)。
详细信息
    作者简介:

    张东彬,1990年出生,男,汉族,福建东山人,博士研究生,工程师,研究方向:新型储能器件关键技术开发与研究, E-mail: dongbin10010619@163.com

    通讯作者:

    滕艾均,1989年出生,男,汉族,河北沧州人,博士研究生,工程师,研究方向:冶金全流程、钒钛新材料及资源综合利用,E-mail: wdtaj2008@163.com

  • 中图分类号: TF841.3,TM911

Research on preparation of nano sodium vanadium phosphate and its sodium storage properties

  • 摘要: 基于磷酸钒钠制备条件苛刻、颗粒粒径大、电导率差等问题,提出了一种制备纳米磷酸钒钠的新方法。通过碱性沉钒形成羟基氧化钒,再利用PO43-、F-等阴离子与OH-的原位离子交换,从而得到纳米化的磷酸钒钠。借助XRD、SEM、FTIR等方法,分析了纳米磷酸钒钠的形成机理,优化了合成条件。电化学测试结果表明,磷酸钒钠的纳米化提升了电子/离子输运能力,使得所制备的纳米磷酸钒钠表现出优异的储钠性能。当电流密度为10 mA/g时,其放电比容量为106.68 mAh/g,并且循环20次循环充放电后,仍能保持80.85 mAh/g的放电比容量。
  • 图  1  纳米磷酸钒钠制备流程示意

    Figure  1.  Schematic diagram of the preparation of nano sodium vanadium phosphate

    图  2  羟基氧化钒与纳米磷酸钒钠的物相信息表征

    Figure  2.  Characterization of hydroxy vanadium oxide and sodium vanadium phosphate

    图  3  沉钒率与NaOH添加量的关系

    Figure  3.  Relationship between vanadium precipitation rate and NaOH amounts

    图  4  不同热处理温度下磷酸钒钠的XRD谱

    Figure  4.  XRD of sodium vanadium phosphate at different post-treatment temperatures

    图  5  不同热处理温度下磷酸钒钠的红外光谱

    Figure  5.  FTIR of sodium vanadium phosphate at different post-treatment temperatures

    图  6  不同后处理温度下的磷酸钒钠样品的SEM形貌

    Figure  6.  SEM of sodium vanadium phosphate samples at different post-treatment temperatures

    图  7  不同后处理温度下的磷酸钒钠样品的激光粒度分布表征

    Figure  7.  Characterization of the particle size distribution of sodium vanadium phosphate samples at different post-treatment temperatures

    图  8  纳米磷酸钒钠扣式半电池的储钠性能表征

    Figure  8.  Characterization of sodium-storage performances of the obtained sodium vanadium phosphate sodium ions battery

    表  1  不同NaOH添加量下,羟基氧化钒的产量变化情况

    Table  1.   Changes in the yield of hydroxy vanadium oxide under different NaOH additions

    VOSO4/
    mL
    NaOH
    添加量/g
    NaOH
    浓度/(mol·L−1)
    混合
    pH
    羟基氧化
    钒产量/g
    沉钒
    率/%
    100.10.253.360.08518.42
    100.20.53.480.324532.13
    100.30.753.620.472046.73
    100.413.780.551454.59
    100.51.253.850.783177.83
    100.61.55.540.82281.39
    100.71.759.520.453444.89
    100.82.012.530.240423.80
    下载: 导出CSV
  • [1] 郑浩, 彭毅, 王仕伟, 等. V2O5/石墨烯纳米复合材料的合成及储钠性能研究[J]. 钢铁钒钛, 2023, 44(1): 32-37.

    Zheng Hao, Peng Yi, Wang Shiwei, et al. Synthesis and sodium storage properties of V2O5/graphene nanocomposites[J]. Iron Steel Vanadium Titanium, 2023, 44(1): 32-37.
    [2] Huang Yangyang, Zheng Yuheng, Li Xiang, et al. Electrode materials of sodium-ion batteries toward practical application[J]. ACS Energy Letters, 2018,7(3):1604−1612.
    [3] Ni Qiao, Bai Ying, Wu Feng, et al. Polyanion-type electrode materials for sodium-ion batteries[J]. Advanced Science, 2017,24(1):90−114.
    [4] 周华, 宋永昌, 刘进, 等. 钒基电极材料在储能领域的研究进展[J]. 钢铁钒钛, 2022, 43(2): 73-80.

    Zhou Hua, Song Yongchang, Liu Jin, et al. Progress of vanadium-based electrode materials in energy storage[J]. Iron Steel Vanadium Titanium, 2022, 43(2): 73-80.
    [5] 张东彬, 常智, 滕艾均, 等. VN基材料的电子结构调控和超电容性能研究[J]. 钢铁钒钛, 2022, 43(5): 45-51.

    Zhang Dongbin, Chang Zhi, Teng Aijun, et al. Regulation on electronic structure of VN-based materials for enhanced supercapacitor performances[J]. Iron Steel Vanadium Titanium, 2022, 43(5): 45-51.
    [6] Chen Gongxuan, Huang Qing, Wu Tian, et al. Polyanion sodium vanadium phosphate for next generation of sodium-ion batteries—a review[J]. Advanced Functional Materials, 2020,30:2001289. doi: 10.1002/adfm.202001289
    [7] Li Shuo, Dong Yifan, Xu Lin, et al. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for highperformance symmetric sodium-ion batteries[J]. Advanced Materials, 2014,26:3545−3553. doi: 10.1002/adma.201305522
    [8] Hao Xiaogang, Liu Zigeng, Gong Zhengliang, et al. In situ XRD and solid state NMR characterization of Na3V2(PO4)2F3 as cathode material for lithium-ion batteries[J]. Scientia Sinica Chimica, 2012,42(1):38−46. (郝小罡, 刘子庚, 龚正良, 等. 锂离子电池正极材料Na3V2(PO4)2F3的原位XRD及固体核磁共振研究[J]. 中国科学:化学, 2012,42(1):38−46. doi: 10.1360/032011-177

    Hao Xiaogang, Liu Zigeng, Gong Zhengliang, et al. In situ XRD and solid state NMR characterization of Na3V2(PO4)2F3 as cathode material for lithium-ion batteries[J]. Scientia Sinica Chimica, 2012, 42(1): 38-46 doi: 10.1360/032011-177
    [9] Qi Yuruo, Tong Zizheng, Zhao Junmei, et al. Scalable room-temperature synthesis of multi-shelled Na3(VOPO4)2F microsphere cathodes[J]. Joule, 2018,2:2348−2363. doi: 10.1016/j.joule.2018.07.027
    [10] Jiang Yu, Zhou Xuefeng, Li Dongjun, et al. Highly reversible Na storage in Na3V2(PO4)3 by optimizing nanostructure and rational surface engineering[J]. Advanced Energy Materials, 2018,8(16):1800068. doi: 10.1002/aenm.201800068
    [11] Inoishi Atsushi, Setoguchi Naoko, Okada Shigeto, et al. Preparation of a single-phase all-solid-state battery via the crystallization of amorphous sodium vanadium phosphate[J]. Physical Chemistry Chemical Physics, 2022,24:27375−27379. doi: 10.1039/D2CP04328A
    [12] Peng Lele, Zhu Yue, Peng Xu, et al. Effective interlayer engineering of two-dimensional VOPO4 nanosheets via controlled organic intercalation for improving alkali ion storage[J]. Nano Letter, 2017,17:6273−6279. doi: 10.1021/acs.nanolett.7b02958
    [13] Fang Yongjin, Yu Xinyao, Lou Xiongwen(David). Nanostructured electrode materials for advanced sodium-ion batteries[J]. Matter, 2019,1(1):90−114. doi: 10.1016/j.matt.2019.05.007
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  647
  • HTML全文浏览量:  57
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-21
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回