留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米磷酸钒钠的制备及其储钠性能研究

张东彬 袁欣然 辛亚男 毕新强 刘天豪 韩慧果 杜光超 滕艾均

张东彬, 袁欣然, 辛亚男, 毕新强, 刘天豪, 韩慧果, 杜光超, 滕艾均. 纳米磷酸钒钠的制备及其储钠性能研究[J]. 钢铁钒钛, 2024, 45(1): 12-18. doi: 10.7513/j.issn.1004-7638.2024.01.003
引用本文: 张东彬, 袁欣然, 辛亚男, 毕新强, 刘天豪, 韩慧果, 杜光超, 滕艾均. 纳米磷酸钒钠的制备及其储钠性能研究[J]. 钢铁钒钛, 2024, 45(1): 12-18. doi: 10.7513/j.issn.1004-7638.2024.01.003
Zhang Dongbin, Yuan Xinran, Xin Yanan, Bi Xinqiang, Liu Tianhao, Han Huiguo, Du Guangchao, Teng Aijun. Research on preparation of nano sodium vanadium phosphate and its sodium storage properties[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 12-18. doi: 10.7513/j.issn.1004-7638.2024.01.003
Citation: Zhang Dongbin, Yuan Xinran, Xin Yanan, Bi Xinqiang, Liu Tianhao, Han Huiguo, Du Guangchao, Teng Aijun. Research on preparation of nano sodium vanadium phosphate and its sodium storage properties[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 12-18. doi: 10.7513/j.issn.1004-7638.2024.01.003

纳米磷酸钒钠的制备及其储钠性能研究

doi: 10.7513/j.issn.1004-7638.2024.01.003
基金项目: 国家重点研发课题(储能电池用钒基正极材料及高浓度全钒电解液制备技术,编号:2023YFC2908305);国家重点研发课题(钒铬中间体可控还原短程制备高附加值产品技术,编号:2022YFC3901004)。
详细信息
    作者简介:

    张东彬,1990年出生,男,汉族,福建东山人,博士研究生,工程师,研究方向:新型储能器件关键技术开发与研究, E-mail: dongbin10010619@163.com

    通讯作者:

    滕艾均,1989年出生,男,汉族,河北沧州人,博士研究生,工程师,研究方向:冶金全流程、钒钛新材料及资源综合利用,E-mail: wdtaj2008@163.com

  • 中图分类号: TF841.3,TM911

Research on preparation of nano sodium vanadium phosphate and its sodium storage properties

  • 摘要: 基于磷酸钒钠制备条件苛刻、颗粒粒径大、电导率差等问题,提出了一种制备纳米磷酸钒钠的新方法。通过碱性沉钒形成羟基氧化钒,再利用PO43-、F-等阴离子与OH-的原位离子交换,从而得到纳米化的磷酸钒钠。借助XRD、SEM、FTIR等方法,分析了纳米磷酸钒钠的形成机理,优化了合成条件。电化学测试结果表明,磷酸钒钠的纳米化提升了电子/离子输运能力,使得所制备的纳米磷酸钒钠表现出优异的储钠性能。当电流密度为10 mA/g时,其放电比容量为106.68 mAh/g,并且循环20次循环充放电后,仍能保持80.85 mAh/g的放电比容量。
  • 图  1  纳米磷酸钒钠制备流程示意

    Figure  1.  Schematic diagram of the preparation of nano sodium vanadium phosphate

    图  2  羟基氧化钒与纳米磷酸钒钠的物相信息表征

    Figure  2.  Characterization of hydroxy vanadium oxide and sodium vanadium phosphate

    图  3  沉钒率与NaOH添加量的关系

    Figure  3.  Relationship between vanadium precipitation rate and NaOH amounts

    图  4  不同热处理温度下磷酸钒钠的XRD谱

    Figure  4.  XRD of sodium vanadium phosphate at different post-treatment temperatures

    图  5  不同热处理温度下磷酸钒钠的红外光谱

    Figure  5.  FTIR of sodium vanadium phosphate at different post-treatment temperatures

    图  6  不同后处理温度下的磷酸钒钠样品的SEM形貌

    Figure  6.  SEM of sodium vanadium phosphate samples at different post-treatment temperatures

    图  7  不同后处理温度下的磷酸钒钠样品的激光粒度分布表征

    Figure  7.  Characterization of the particle size distribution of sodium vanadium phosphate samples at different post-treatment temperatures

    图  8  纳米磷酸钒钠扣式半电池的储钠性能表征

    Figure  8.  Characterization of sodium-storage performances of the obtained sodium vanadium phosphate sodium ions battery

    表  1  不同NaOH添加量下,羟基氧化钒的产量变化情况

    Table  1.   Changes in the yield of hydroxy vanadium oxide under different NaOH additions

    VOSO4/
    mL
    NaOH
    添加量/g
    NaOH
    浓度/(mol·L−1)
    混合
    pH
    羟基氧化
    钒产量/g
    沉钒
    率/%
    100.10.253.360.08518.42
    100.20.53.480.324532.13
    100.30.753.620.472046.73
    100.413.780.551454.59
    100.51.253.850.783177.83
    100.61.55.540.82281.39
    100.71.759.520.453444.89
    100.82.012.530.240423.80
    下载: 导出CSV
  • [1] 郑浩, 彭毅, 王仕伟, 等. V2O5/石墨烯纳米复合材料的合成及储钠性能研究[J]. 钢铁钒钛, 2023, 44(1): 32-37.

    Zheng Hao, Peng Yi, Wang Shiwei, et al. Synthesis and sodium storage properties of V2O5/graphene nanocomposites[J]. Iron Steel Vanadium Titanium, 2023, 44(1): 32-37.
    [2] Huang Yangyang, Zheng Yuheng, Li Xiang, et al. Electrode materials of sodium-ion batteries toward practical application[J]. ACS Energy Letters, 2018,7(3):1604−1612.
    [3] Ni Qiao, Bai Ying, Wu Feng, et al. Polyanion-type electrode materials for sodium-ion batteries[J]. Advanced Science, 2017,24(1):90−114.
    [4] 周华, 宋永昌, 刘进, 等. 钒基电极材料在储能领域的研究进展[J]. 钢铁钒钛, 2022, 43(2): 73-80.

    Zhou Hua, Song Yongchang, Liu Jin, et al. Progress of vanadium-based electrode materials in energy storage[J]. Iron Steel Vanadium Titanium, 2022, 43(2): 73-80.
    [5] 张东彬, 常智, 滕艾均, 等. VN基材料的电子结构调控和超电容性能研究[J]. 钢铁钒钛, 2022, 43(5): 45-51.

    Zhang Dongbin, Chang Zhi, Teng Aijun, et al. Regulation on electronic structure of VN-based materials for enhanced supercapacitor performances[J]. Iron Steel Vanadium Titanium, 2022, 43(5): 45-51.
    [6] Chen Gongxuan, Huang Qing, Wu Tian, et al. Polyanion sodium vanadium phosphate for next generation of sodium-ion batteries—a review[J]. Advanced Functional Materials, 2020,30:2001289. doi: 10.1002/adfm.202001289
    [7] Li Shuo, Dong Yifan, Xu Lin, et al. Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for highperformance symmetric sodium-ion batteries[J]. Advanced Materials, 2014,26:3545−3553. doi: 10.1002/adma.201305522
    [8] Hao Xiaogang, Liu Zigeng, Gong Zhengliang, et al. In situ XRD and solid state NMR characterization of Na3V2(PO4)2F3 as cathode material for lithium-ion batteries[J]. Scientia Sinica Chimica, 2012,42(1):38−46. (郝小罡, 刘子庚, 龚正良, 等. 锂离子电池正极材料Na3V2(PO4)2F3的原位XRD及固体核磁共振研究[J]. 中国科学:化学, 2012,42(1):38−46. doi: 10.1360/032011-177

    Hao Xiaogang, Liu Zigeng, Gong Zhengliang, et al. In situ XRD and solid state NMR characterization of Na3V2(PO4)2F3 as cathode material for lithium-ion batteries[J]. Scientia Sinica Chimica, 2012, 42(1): 38-46 doi: 10.1360/032011-177
    [9] Qi Yuruo, Tong Zizheng, Zhao Junmei, et al. Scalable room-temperature synthesis of multi-shelled Na3(VOPO4)2F microsphere cathodes[J]. Joule, 2018,2:2348−2363. doi: 10.1016/j.joule.2018.07.027
    [10] Jiang Yu, Zhou Xuefeng, Li Dongjun, et al. Highly reversible Na storage in Na3V2(PO4)3 by optimizing nanostructure and rational surface engineering[J]. Advanced Energy Materials, 2018,8(16):1800068. doi: 10.1002/aenm.201800068
    [11] Inoishi Atsushi, Setoguchi Naoko, Okada Shigeto, et al. Preparation of a single-phase all-solid-state battery via the crystallization of amorphous sodium vanadium phosphate[J]. Physical Chemistry Chemical Physics, 2022,24:27375−27379. doi: 10.1039/D2CP04328A
    [12] Peng Lele, Zhu Yue, Peng Xu, et al. Effective interlayer engineering of two-dimensional VOPO4 nanosheets via controlled organic intercalation for improving alkali ion storage[J]. Nano Letter, 2017,17:6273−6279. doi: 10.1021/acs.nanolett.7b02958
    [13] Fang Yongjin, Yu Xinyao, Lou Xiongwen(David). Nanostructured electrode materials for advanced sodium-ion batteries[J]. Matter, 2019,1(1):90−114. doi: 10.1016/j.matt.2019.05.007
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  12
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-21
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回