留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

VAR电磁搅拌工艺对熔体流动影响的模拟研究

黄立清 樊凯 郭杰 李超 李俊杰 王锦程

黄立清, 樊凯, 郭杰, 李超, 李俊杰, 王锦程. VAR电磁搅拌工艺对熔体流动影响的模拟研究[J]. 钢铁钒钛, 2024, 45(1): 65-70. doi: 10.7513/j.issn.1004-7638.2024.01.010
引用本文: 黄立清, 樊凯, 郭杰, 李超, 李俊杰, 王锦程. VAR电磁搅拌工艺对熔体流动影响的模拟研究[J]. 钢铁钒钛, 2024, 45(1): 65-70. doi: 10.7513/j.issn.1004-7638.2024.01.010
Huang Liqing, Fan Kai, Guo Jie, Li Chao, Li Junjie, Wang Jincheng. Simulation study on the effect of VAR magnetic stirring process on the melt flow[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 65-70. doi: 10.7513/j.issn.1004-7638.2024.01.010
Citation: Huang Liqing, Fan Kai, Guo Jie, Li Chao, Li Junjie, Wang Jincheng. Simulation study on the effect of VAR magnetic stirring process on the melt flow[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 65-70. doi: 10.7513/j.issn.1004-7638.2024.01.010

VAR电磁搅拌工艺对熔体流动影响的模拟研究

doi: 10.7513/j.issn.1004-7638.2024.01.010
基金项目: 博士后国际交流计划项目(YJ20210408)。
详细信息
    作者简介:

    黄立清,1989年出生,男,湖南常德人,博士,长期从事钛合金熔炼与加工研究工作,E-mail: liqnghuang2017@163.com

    通讯作者:

    樊凯,1982年出生,男,陕西富平人,博士,正高级工程师,长期从事钛合金熔炼与加工研究工作,E-mail: fk@xtjtty.com

  • 中图分类号: TF823,TF806.6

Simulation study on the effect of VAR magnetic stirring process on the melt flow

  • 摘要: 真空自耗电弧熔炼中熔体的流动行为影响铸锭的凝固特性。熔体运动直接观测困难,因此通过模拟揭示熔体的流动行为非常关键。采用自主开发的三维模拟模型,研究了不同搅拌工艺参数下,熔炼过程中熔体的流动行为及熔池形貌。研究表明,随着搅拌电流从0.01 A逐步增加到25 A(搅拌周期为8 s),熔体旋转速度从0.0001 m/s近似线性增加到0.212 m/s,熔池逐渐宽化(由V形变成U形),熔池最大深度和熔池体积均存在一个明显的先下降后上升的过程。而随着搅拌周期从1 s逐步增加到24 s(搅拌电流为5 A),熔体旋转速度从0.0125 m/s快速增加到一个较大值(16 s时为0.0818 m/s)后趋于稳定,熔池逐渐宽化,熔池最大深度逐渐降低到一个最低值后趋于稳定。搅拌电流和搅拌周期均影响熔体的旋转及平面运动,但两者的影响机理存在一定的差异。
  • 图  1  5 A-8 s搅拌参数下熔池中的竖直平面流场(a)、旋转电磁力(b)及旋转流场(c)

    Figure  1.  Molten pool with 5 A-8 s stirring parameters: vertical plane flow field (a), stirring magnetic force (b), and swirling flow field (c)

    图  2  两个搅拌周期内搅拌电磁力和熔体最大旋转速度的变化

    Figure  2.  Swirling magnetic force and maximum molten swirling velocity during two periods

    图  3  不同搅拌电流及周期8 s下旋转流速与竖直平面流速

    Figure  3.  The swirling velocity and vertical plane flow velocity of molten pool under different stirring current with a period of 8 s

    图  4  不同搅拌电流及周期8 s下熔池深度与熔池体积

    Figure  4.  The pool depth and pool volume of molten pool under different stirring current with a period of 8 s

    图  5  不同搅拌电流及周期8 s下竖直平面流场局部

    Figure  5.  The local vertical plane flow map of molten pool under different stirring current with a period of 8 s

    图  6  不同搅拌周期及5 A搅拌电流下的竖直平面流速与旋转流速

    Figure  6.  The swirling velocity and vertical plane flow velocity of molten pool under different stirring periods with a current of 5 A

    图  7  不同搅拌周期及5 A搅拌电流下的熔池深度与熔池体积

    Figure  7.  The pool depth and pool volume of molten pool under different stirring periods with a current of 5 A

    图  8  不同搅拌周期及5 A搅拌电流下的竖直平面流场局部

    Figure  8.  The local vertical plane flow map of molten pool under different stirring periods with a current of 5 A

    表  1  计算模型采用的物性参数[16]

    Table  1.   Physical parameters of the computational model

    密度 /(kg·m−3)扩散系数/(m2·s−1)熔化潜热/(J·kg−1)Cr分配系数液相线斜率 /(K·%−1)溶质膨胀系数 /%−1
    41704.0×10−93.77×1050.75−2.0−0.35
    比热容 /(J·kg−1·K−1)热导率/(W·m−1·K−1)热膨胀系数 /K−1液相黏度/(kg·m−1·s−1)电导率/(S·m−1)磁导率/(H·m−1)
    97532.76.5×10−53.1×10−31.0×1061.26×10−6
    下载: 导出CSV
  • [1] Liu Xinxin. Research progress in preparation of vacuum consumable electrode EAF remelting technology of titanium alloys[J]. Industrial Heating, 2019,48(3):67−69. (刘欣欣. 真空自耗电弧熔炼制备钛合金技术的研究进展[J]. 工业加热, 2019,48(3):67−69. doi: 10.3969/j.issn.1002-1639.2019.03.018

    Liu Xinxin. Research progress in preparation of vacuum consumable electrode EAF remelting technology of titanium alloys [J]. Industrial Heating, 2019, 48(3): 67-69. doi: 10.3969/j.issn.1002-1639.2019.03.018
    [2] Lei Wenguang, Zhao Yongqing, Han Dong, et al. Development of melting technology for titanium and titanium alloys[J]. Materials Reports, 2016,30(5):101−106. (雷文光, 赵永庆, 韩栋, 等. 钛及钛合金熔炼技术发展现状[J]. 材料导报, 2016,30(5):101−106.

    Lei Wenguang, Zhao Yongqing, Han Dong, et al. Development of melting technology for titanium and titanium alloys [J]. Materials Reports, 2016, 30(5): 101-106.
    [3] Zhao Yongqing, Liu Junlin, Zhou Lian. Analysis on the segregation of typical β alloying elements of Cu, Fe and Cr in Ti alloys[J]. Rare Metal Materials and Engineering, 2005,34(4):531−538. (赵永庆, 刘军林, 周廉. 典型β型钛合金元素Cu, Fe和Cr的偏析规律[J]. 稀有金属材料与工程, 2005,34(4):531−538. doi: 10.3321/j.issn:1002-185X.2005.04.006

    Zhao Yongqing, Liu Junlin, Zhou Lian. Analysis on the segregation of typical β alloying elements of Cu, Fe and Cr in Ti alloys [J]. Rare Metal Materials and Engineering, 2005, 34(4): 531-538. doi: 10.3321/j.issn:1002-185X.2005.04.006
    [4] Liu Junlin, Zhao Yongqing, Zhou Lian. Segregation of Ti-2.5Cu, Ti-3Fe and Ti-3Cr alloy ingots[J]. Rare Metal Materials and Engineering, 2004,33(7):731−735. (刘军林, 赵永庆, 周廉. Ti-2.5Cu, Ti-3Fe, Ti-3Cr合金铸锭的偏析[J]. 稀有金属材料与工程, 2004,33(7):731−735. doi: 10.3321/j.issn:1002-185X.2004.07.014

    Liu Junlin, Zhao Yongqing, Zhou Lian. Segregation of Ti-2.5 Cu, Ti-3 Fe and Ti-3 Cr alloy ingots [J]. Rare Metal Materials and Engineering, 2004, 33(7): 731-735. doi: 10.3321/j.issn:1002-185X.2004.07.014
    [5] Hayakawa Hiroshi, Fukada Nobuo, Udagawa Takeshi, et al. Solidification structure and segregation in cast ingots of titanium alloy produced by vacuum arc consumable electrode method[J]. ISIJ International, 1991,31(8):775−784. doi: 10.2355/isijinternational.31.775
    [6] Zagrebelnyy Dmytro, Krane Matthew John M. Segregation development in multiple melt vacuum arc remelting[J]. Metallurgical and Materials Transactions B, 2009,40(3):281−288. doi: 10.1007/s11663-008-9163-5
    [7] Kou H, Zhang Y, Yang Z, et al. Liquid metal flow behavior during vacuum consumable arc remelting process for titanium[J]. International Journal of Engineering & Technology, 2014,12(1):50−56.
    [8] Dobatkin V I, Anoshkin N F. Comparison of macrosegregation in titanium and aluminium alloy ingots[J]. Materials Science and Engineering:A, 1999,263(2):224−229. doi: 10.1016/S0921-5093(98)01152-6
    [9] Kondrashov E N, Musatov M I, Maksimov A Yu, et al. Calculation of the molten pool depth in vacuum arc remelting of alloy Vt3-1[J]. Journal of Engineering Thermophysics, 2007,16(1):19−25. doi: 10.1134/S1810232807010031
    [10] Xiao Cong. Simulation and industrial validation of molten pool morphology and solidification structure of pure titanium during VAR process[J]. Iron Steel Vanadium Titanium, 2016,37(2):44−49, 83. (肖聪. 纯钛VAR熔池形貌和凝固组织模拟及其工业验证[J]. 钢铁钒钛, 2016,37(2):44−49, 83. doi: 10.7513/j.issn.1004-7638.2016.02.008

    Xiao Cong. Simulation and industrial validation of molten pool morphology and solidification structure of pure titanium during VAR process [J]. Iron Steel Vanadium Titanium, 2016, 37(2): 44-49, 83. doi: 10.7513/j.issn.1004-7638.2016.02.008
    [11] Li Pengfei, Li Jinshan, Sun Chang, et al. Multiscale modeling of the vacuum arc remelting process of titanium alloy[J]. Iron Steel Vanadium Titanium, 2013,34(2):24−29. (李鹏飞, 李金山, 孙畅, 等. 钛合金真空自耗电弧熔炼过程的多尺度模拟[J]. 钢铁钒钛, 2013,34(2):24−29. doi: 10.7513/j.issn.1004-7638.2013.02.006

    Li Pengfei, Li Jinshan, Sun Chang, et al. Multiscale modeling of the vacuum arc remelting process of titanium alloy [J]. Iron Steel Vanadium Titanium, 2013, 34(2): 24-29. doi: 10.7513/j.issn.1004-7638.2013.02.006
    [12] Fan Kai, Wu Lincai, Li Junjie, et al. Numerical simulation of macrosegregation caused by buoyancy driven flow during VAR process for titanium alloys[J]. Rare Metal Materials and Engineering, 2020,49(3):871−877. (樊凯, 吴林财, 李俊杰, 等. 钛合金VAR过程中自然对流下的宏观偏析行为模拟[J]. 稀有金属材料与工程, 2020,49(3):871−877.

    Fan Kai, Wu Lincai, Li Junjie, et al. Numerical simulation of macrosegregation caused by buoyancy driven flow during VAR process for titanium alloys [J]. Rare Metal Materials and Engineering, 2020, 49(3): 871-877.
    [13] Huang Liqing, Wu Jingyang, Guo Jie, et al. Liquid metal flow behavior during vacuum consumable arc remelting process for titanium[J]. Iron Steel Vanadium Titanium, 2023,44(4):1−8. (黄立清, 吴京洋, 郭杰, 等. 钛合金VAR过程中自感电磁场对流场与偏析行为的影响[J]. 钢铁钒钛, 2023,44(4):1−8. doi: 10.7513/j.issn.1004-7638.2023.04.001

    Huang Liqing, Wu Jingyang, Guo Jie, et al. Liquid metal flow behavior during vacuum consumable arc remelting process for titanium [J]. Iron Steel Vanadium Titanium, 2023, 44(4): 1-8. doi: 10.7513/j.issn.1004-7638.2023.04.001
    [14] 郭杰. TC17合金VAR铸锭宏/微观偏析及组织演化模拟[D]. 西安: 西北工业大学, 2023.

    Guo Jie. Simulation of macro/micro segregation and microstructure evolution during the vacuum arc remelting of TC17 alloy [D]. Xi’an: Northwestern Polytechnical University, 2023.
    [15] Davidson P A, He X, Lowe A J. Flow transitions in vacuum arc remelting[J]. Materials Science and Technology, 2000,16(6):699−711. doi: 10.1179/026708300101508306
    [16] Covino Bemard S, Cramer Stephen D. ASM Handbook [M]. USA: ASM International, 2003.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  15
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-08
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回