中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

VAR电磁搅拌工艺对熔体流动影响的模拟研究

黄立清 樊凯 郭杰 李超 李俊杰 王锦程

黄立清, 樊凯, 郭杰, 李超, 李俊杰, 王锦程. VAR电磁搅拌工艺对熔体流动影响的模拟研究[J]. 钢铁钒钛, 2024, 45(1): 65-70. doi: 10.7513/j.issn.1004-7638.2024.01.010
引用本文: 黄立清, 樊凯, 郭杰, 李超, 李俊杰, 王锦程. VAR电磁搅拌工艺对熔体流动影响的模拟研究[J]. 钢铁钒钛, 2024, 45(1): 65-70. doi: 10.7513/j.issn.1004-7638.2024.01.010
Huang Liqing, Fan Kai, Guo Jie, Li Chao, Li Junjie, Wang Jincheng. Simulation study on the effect of VAR magnetic stirring process on the melt flow[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 65-70. doi: 10.7513/j.issn.1004-7638.2024.01.010
Citation: Huang Liqing, Fan Kai, Guo Jie, Li Chao, Li Junjie, Wang Jincheng. Simulation study on the effect of VAR magnetic stirring process on the melt flow[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(1): 65-70. doi: 10.7513/j.issn.1004-7638.2024.01.010

VAR电磁搅拌工艺对熔体流动影响的模拟研究

doi: 10.7513/j.issn.1004-7638.2024.01.010
基金项目: 博士后国际交流计划项目(YJ20210408)。
详细信息
    作者简介:

    黄立清,1989年出生,男,湖南常德人,博士,长期从事钛合金熔炼与加工研究工作,E-mail: liqnghuang2017@163.com

    通讯作者:

    樊凯,1982年出生,男,陕西富平人,博士,正高级工程师,长期从事钛合金熔炼与加工研究工作,E-mail: fk@xtjtty.com

  • 中图分类号: TF823,TF806.6

Simulation study on the effect of VAR magnetic stirring process on the melt flow

  • 摘要: 真空自耗电弧熔炼中熔体的流动行为影响铸锭的凝固特性。熔体运动直接观测困难,因此通过模拟揭示熔体的流动行为非常关键。采用自主开发的三维模拟模型,研究了不同搅拌工艺参数下,熔炼过程中熔体的流动行为及熔池形貌。研究表明,随着搅拌电流从0.01 A逐步增加到25 A(搅拌周期为8 s),熔体旋转速度从0.0001 m/s近似线性增加到0.212 m/s,熔池逐渐宽化(由V形变成U形),熔池最大深度和熔池体积均存在一个明显的先下降后上升的过程。而随着搅拌周期从1 s逐步增加到24 s(搅拌电流为5 A),熔体旋转速度从0.0125 m/s快速增加到一个较大值(16 s时为0.0818 m/s)后趋于稳定,熔池逐渐宽化,熔池最大深度逐渐降低到一个最低值后趋于稳定。搅拌电流和搅拌周期均影响熔体的旋转及平面运动,但两者的影响机理存在一定的差异。
  • 图  1  5 A-8 s搅拌参数下熔池中的竖直平面流场(a)、旋转电磁力(b)及旋转流场(c)

    Figure  1.  Molten pool with 5 A-8 s stirring parameters: vertical plane flow field (a), stirring magnetic force (b), and swirling flow field (c)

    图  2  两个搅拌周期内搅拌电磁力和熔体最大旋转速度的变化

    Figure  2.  Swirling magnetic force and maximum molten swirling velocity during two periods

    图  3  不同搅拌电流及周期8 s下旋转流速与竖直平面流速

    Figure  3.  The swirling velocity and vertical plane flow velocity of molten pool under different stirring current with a period of 8 s

    图  4  不同搅拌电流及周期8 s下熔池深度与熔池体积

    Figure  4.  The pool depth and pool volume of molten pool under different stirring current with a period of 8 s

    图  5  不同搅拌电流及周期8 s下竖直平面流场局部

    Figure  5.  The local vertical plane flow map of molten pool under different stirring current with a period of 8 s

    图  6  不同搅拌周期及5 A搅拌电流下的竖直平面流速与旋转流速

    Figure  6.  The swirling velocity and vertical plane flow velocity of molten pool under different stirring periods with a current of 5 A

    图  7  不同搅拌周期及5 A搅拌电流下的熔池深度与熔池体积

    Figure  7.  The pool depth and pool volume of molten pool under different stirring periods with a current of 5 A

    图  8  不同搅拌周期及5 A搅拌电流下的竖直平面流场局部

    Figure  8.  The local vertical plane flow map of molten pool under different stirring periods with a current of 5 A

    表  1  计算模型采用的物性参数[16]

    Table  1.   Physical parameters of the computational model

    密度 /(kg·m−3)扩散系数/(m2·s−1)熔化潜热/(J·kg−1)Cr分配系数液相线斜率 /(K·%−1)溶质膨胀系数 /%−1
    41704.0×10−93.77×1050.75−2.0−0.35
    比热容 /(J·kg−1·K−1)热导率/(W·m−1·K−1)热膨胀系数 /K−1液相黏度/(kg·m−1·s−1)电导率/(S·m−1)磁导率/(H·m−1)
    97532.76.5×10−53.1×10−31.0×1061.26×10−6
    下载: 导出CSV
  • [1] Liu Xinxin. Research progress in preparation of vacuum consumable electrode EAF remelting technology of titanium alloys[J]. Industrial Heating, 2019,48(3):67−69. (刘欣欣. 真空自耗电弧熔炼制备钛合金技术的研究进展[J]. 工业加热, 2019,48(3):67−69. doi: 10.3969/j.issn.1002-1639.2019.03.018

    Liu Xinxin. Research progress in preparation of vacuum consumable electrode EAF remelting technology of titanium alloys [J]. Industrial Heating, 2019, 48(3): 67-69. doi: 10.3969/j.issn.1002-1639.2019.03.018
    [2] Lei Wenguang, Zhao Yongqing, Han Dong, et al. Development of melting technology for titanium and titanium alloys[J]. Materials Reports, 2016,30(5):101−106. (雷文光, 赵永庆, 韩栋, 等. 钛及钛合金熔炼技术发展现状[J]. 材料导报, 2016,30(5):101−106.

    Lei Wenguang, Zhao Yongqing, Han Dong, et al. Development of melting technology for titanium and titanium alloys [J]. Materials Reports, 2016, 30(5): 101-106.
    [3] Zhao Yongqing, Liu Junlin, Zhou Lian. Analysis on the segregation of typical β alloying elements of Cu, Fe and Cr in Ti alloys[J]. Rare Metal Materials and Engineering, 2005,34(4):531−538. (赵永庆, 刘军林, 周廉. 典型β型钛合金元素Cu, Fe和Cr的偏析规律[J]. 稀有金属材料与工程, 2005,34(4):531−538. doi: 10.3321/j.issn:1002-185X.2005.04.006

    Zhao Yongqing, Liu Junlin, Zhou Lian. Analysis on the segregation of typical β alloying elements of Cu, Fe and Cr in Ti alloys [J]. Rare Metal Materials and Engineering, 2005, 34(4): 531-538. doi: 10.3321/j.issn:1002-185X.2005.04.006
    [4] Liu Junlin, Zhao Yongqing, Zhou Lian. Segregation of Ti-2.5Cu, Ti-3Fe and Ti-3Cr alloy ingots[J]. Rare Metal Materials and Engineering, 2004,33(7):731−735. (刘军林, 赵永庆, 周廉. Ti-2.5Cu, Ti-3Fe, Ti-3Cr合金铸锭的偏析[J]. 稀有金属材料与工程, 2004,33(7):731−735. doi: 10.3321/j.issn:1002-185X.2004.07.014

    Liu Junlin, Zhao Yongqing, Zhou Lian. Segregation of Ti-2.5 Cu, Ti-3 Fe and Ti-3 Cr alloy ingots [J]. Rare Metal Materials and Engineering, 2004, 33(7): 731-735. doi: 10.3321/j.issn:1002-185X.2004.07.014
    [5] Hayakawa Hiroshi, Fukada Nobuo, Udagawa Takeshi, et al. Solidification structure and segregation in cast ingots of titanium alloy produced by vacuum arc consumable electrode method[J]. ISIJ International, 1991,31(8):775−784. doi: 10.2355/isijinternational.31.775
    [6] Zagrebelnyy Dmytro, Krane Matthew John M. Segregation development in multiple melt vacuum arc remelting[J]. Metallurgical and Materials Transactions B, 2009,40(3):281−288. doi: 10.1007/s11663-008-9163-5
    [7] Kou H, Zhang Y, Yang Z, et al. Liquid metal flow behavior during vacuum consumable arc remelting process for titanium[J]. International Journal of Engineering & Technology, 2014,12(1):50−56.
    [8] Dobatkin V I, Anoshkin N F. Comparison of macrosegregation in titanium and aluminium alloy ingots[J]. Materials Science and Engineering:A, 1999,263(2):224−229. doi: 10.1016/S0921-5093(98)01152-6
    [9] Kondrashov E N, Musatov M I, Maksimov A Yu, et al. Calculation of the molten pool depth in vacuum arc remelting of alloy Vt3-1[J]. Journal of Engineering Thermophysics, 2007,16(1):19−25. doi: 10.1134/S1810232807010031
    [10] Xiao Cong. Simulation and industrial validation of molten pool morphology and solidification structure of pure titanium during VAR process[J]. Iron Steel Vanadium Titanium, 2016,37(2):44−49, 83. (肖聪. 纯钛VAR熔池形貌和凝固组织模拟及其工业验证[J]. 钢铁钒钛, 2016,37(2):44−49, 83. doi: 10.7513/j.issn.1004-7638.2016.02.008

    Xiao Cong. Simulation and industrial validation of molten pool morphology and solidification structure of pure titanium during VAR process [J]. Iron Steel Vanadium Titanium, 2016, 37(2): 44-49, 83. doi: 10.7513/j.issn.1004-7638.2016.02.008
    [11] Li Pengfei, Li Jinshan, Sun Chang, et al. Multiscale modeling of the vacuum arc remelting process of titanium alloy[J]. Iron Steel Vanadium Titanium, 2013,34(2):24−29. (李鹏飞, 李金山, 孙畅, 等. 钛合金真空自耗电弧熔炼过程的多尺度模拟[J]. 钢铁钒钛, 2013,34(2):24−29. doi: 10.7513/j.issn.1004-7638.2013.02.006

    Li Pengfei, Li Jinshan, Sun Chang, et al. Multiscale modeling of the vacuum arc remelting process of titanium alloy [J]. Iron Steel Vanadium Titanium, 2013, 34(2): 24-29. doi: 10.7513/j.issn.1004-7638.2013.02.006
    [12] Fan Kai, Wu Lincai, Li Junjie, et al. Numerical simulation of macrosegregation caused by buoyancy driven flow during VAR process for titanium alloys[J]. Rare Metal Materials and Engineering, 2020,49(3):871−877. (樊凯, 吴林财, 李俊杰, 等. 钛合金VAR过程中自然对流下的宏观偏析行为模拟[J]. 稀有金属材料与工程, 2020,49(3):871−877.

    Fan Kai, Wu Lincai, Li Junjie, et al. Numerical simulation of macrosegregation caused by buoyancy driven flow during VAR process for titanium alloys [J]. Rare Metal Materials and Engineering, 2020, 49(3): 871-877.
    [13] Huang Liqing, Wu Jingyang, Guo Jie, et al. Liquid metal flow behavior during vacuum consumable arc remelting process for titanium[J]. Iron Steel Vanadium Titanium, 2023,44(4):1−8. (黄立清, 吴京洋, 郭杰, 等. 钛合金VAR过程中自感电磁场对流场与偏析行为的影响[J]. 钢铁钒钛, 2023,44(4):1−8. doi: 10.7513/j.issn.1004-7638.2023.04.001

    Huang Liqing, Wu Jingyang, Guo Jie, et al. Liquid metal flow behavior during vacuum consumable arc remelting process for titanium [J]. Iron Steel Vanadium Titanium, 2023, 44(4): 1-8. doi: 10.7513/j.issn.1004-7638.2023.04.001
    [14] 郭杰. TC17合金VAR铸锭宏/微观偏析及组织演化模拟[D]. 西安: 西北工业大学, 2023.

    Guo Jie. Simulation of macro/micro segregation and microstructure evolution during the vacuum arc remelting of TC17 alloy [D]. Xi’an: Northwestern Polytechnical University, 2023.
    [15] Davidson P A, He X, Lowe A J. Flow transitions in vacuum arc remelting[J]. Materials Science and Technology, 2000,16(6):699−711. doi: 10.1179/026708300101508306
    [16] Covino Bemard S, Cramer Stephen D. ASM Handbook [M]. USA: ASM International, 2003.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  574
  • HTML全文浏览量:  122
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-08
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回