留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

废SCR脱硝催化剂钒、钛、钨选择性分离研究

张振全 赵备备 李兰杰 董自慧 白瑞国 王海旭

张振全, 赵备备, 李兰杰, 董自慧, 白瑞国, 王海旭. 废SCR脱硝催化剂钒、钛、钨选择性分离研究[J]. 钢铁钒钛, 2021, 42(1): 24-31. doi: 10.7513/j.issn.1004-7638.2021.01.004
引用本文: 张振全, 赵备备, 李兰杰, 董自慧, 白瑞国, 王海旭. 废SCR脱硝催化剂钒、钛、钨选择性分离研究[J]. 钢铁钒钛, 2021, 42(1): 24-31. doi: 10.7513/j.issn.1004-7638.2021.01.004
Zhang Zhenquan, Zhao Beibei, Li Lanjie, Dong Zihui, Bai Ruiguo, Wang Haixu. Study on selective separation of vanadium, titanium and tungsten from spent SCR denitration catalyst[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 24-31. doi: 10.7513/j.issn.1004-7638.2021.01.004
Citation: Zhang Zhenquan, Zhao Beibei, Li Lanjie, Dong Zihui, Bai Ruiguo, Wang Haixu. Study on selective separation of vanadium, titanium and tungsten from spent SCR denitration catalyst[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(1): 24-31. doi: 10.7513/j.issn.1004-7638.2021.01.004

废SCR脱硝催化剂钒、钛、钨选择性分离研究

doi: 10.7513/j.issn.1004-7638.2021.01.004
基金项目: 承德市科学技术研究与发展计划项目(项目编号:202001B007)。
详细信息
    作者简介:

    张振全(1974—),男,山西文水人,硕士,高级工程师,主要从事企业管理、控制工程以及金属材料加工

    通讯作者:

    李兰杰,通讯联系人,正高级工程师,E-mail:lilanjie20040014@163.com

  • 中图分类号: TF823, TQ426

Study on selective separation of vanadium, titanium and tungsten from spent SCR denitration catalyst

  • 摘要: 分别采用NaOH、HCl浸出废SCR催化剂,碳酸钠焙烧-水浸废SCR催化剂选择性分离钛。试验表明:碳酸钠焙烧-水浸废催化剂可实现钛与钒、钨高效分离。较优工艺条件:焙烧温度850 ℃,焙烧时间3 h,碳酸钠与废催化剂质量比为1.3,浸出温度95 ℃,浸出时间1 h,搅拌速度500 r/min。V、As、W的浸出率分别为52.26%,98.24%和99.9%。采用硫酸浸出废SCR催化剂钠化焙烧渣实现高效提取钛。工艺条件:上述较优条件焙烧渣,40%硫酸,液固比4∶1,浸出温度90 ℃,浸出时间3 h,搅拌速度500 r/min。钛的浸出率为93.4%。采用自生晶种水解法制备偏钛酸,钛水解率为94.05%,偏钛酸纯度为94.07%。
  • 图  1  废SCR催化剂的XRD分析结果

    Figure  1.  XRD pattern of spent SCR catalyst

    图  2  废SCR脱硝催化剂钒、钛、钨选择性分离研究工艺流程

    Figure  2.  Process flow of selective separation of V, Ti and W from spent SCR catalyst

    图  3  (a) V-Na-H2O体系的E-pH关系;(b) W-Na-H2O体系的E-pH关系;(c) As-Na-H2O体系的E-pH关系

    Figure  3.  (a) E-pH relationship of V-Na-H2O system; (b) E-pH relationship of W-Na-H2O system; (c) E-pH relationship of As-Na-H2O system

    图  4  (a) V-H2O体系的E-pH关系;(b) W-H2O体系的E-pH关系

    Figure  4.  (a) E-pH relationship of V-H2O system; (b) E-pH relationship of W-H2O system

    图  5  主要元素浸出率随NaOH浓度变化曲线

    Figure  5.  Leaching rates of main elements at different NaOH concentrations

    图  6  碳酸钠与废脱硝催化剂质量比为1.3、1.4的反应产物XRD

    Figure  6.  XRD patterns of roasting products with mass ratio of sodium carbonate to spent denitration catalyst of 1.3 and 1.4

    图  7  碳酸钠与废脱硝催化剂质量比对主要元素浸出率的影响

    Figure  7.  Effect of mass ratio of sodium carbonate to spent denitration catalyst on leaching rate of main elements

    图  8  焙烧熟料

    Figure  8.  Calcined clinker

    图  9  水解试验装置

    Figure  9.  Hydrolysis test device

    表  1  废SCR脱硝催化剂化学成分分析

    Table  1.   Chemical compositions of spent SCR denitration catalyst                 %

    AlAsFeKMgSiTiVW
    1.030.140.300.120.134.3245.120.7542.59
    下载: 导出CSV

    表  2  NaOH浸出废脱硝催化剂浸出液各元素含量

    Table  2.   Contents of elements in leaching solution of spent denitration catalyst leached by NaOH

    NaOH浓度/(g·L−1浸出液各元素含量/(mg·L−1浸出液体积/mL
    AlAsMnMoPSSiTiVW
    50 330.7 148.9 0.25 8.51 10.08 1048 1415 0.41 388.2 838.2 198
    100 545.1 176 0.33 11.13 9.81 1220 2409 0.91 463.4 1405 170
    200 292.1 207.6 0.46 14.78 11.62 1322 3645 4.78 569.2 2418 160
    300 497 184.3 0.55 12.61 8.94 1148 4185 18.93 510.2 2629 188
    下载: 导出CSV

    表  3  盐酸浸出废脱硝催化剂浸出液各元素含量

    Table  3.   Concentration of elements in solution of spent denitration catalyst leached by HCl solution

    盐酸质量分数/%浸出液中各元素含量/(mg·L−1浸出液体积/mL
    AlAsCaKMgNaSSiTiVW
    10 124.7 27.57 170.4 167.9 21.93 261 792.3 69.43 115.2 276.3 0.62 230
    15 146.5 33.01 183.6 170.2 23.76 232 792 33.45 218.4 290.6 2.43 219
    20 114.2 27.8 169 148.9 18.78 203 699.8 18.48 360.2 270.6 5.09 240
    下载: 导出CSV

    表  4  盐酸浸出废脱硝催化剂主要元素浸出率

    Table  4.   Leaching rate of main elements in waste denitration catalyst leached by hydrochloric acid

    盐酸质量分数/%浸出率/%
    AsVW
    10 18.12 33.71 0.02
    15 20.65 33.76 0.08
    20 19.06 34.45 0.19
    下载: 导出CSV

    表  5  废SCR脱硝催化剂及浸出渣成分分析

    Table  5.   Chemical compositions of spent SCR denitration catalyst and the leaching residue %

    AlAsCaFeKMgSiTiVW
    脱硝催化剂 1.03 0.14 1.06 0.30 0.12 0.13 4.32 45.12 0.75 2.59
    浸出渣 0.02 0 0.70 0.22 0.021 0.071 0.16 38.88 0.31 0.07
    下载: 导出CSV

    表  6  硫酸浸出Na2CO3焙烧渣浸出液各元素浓度

    Table  6.   Concentration of elements in leaching solution of Na2CO3 roasting residue leached by sulfuric acid mg/L

    AlAsCaCrFeKMgNaSiTiVW
    238.3 0 827.1 3.12 210.9 15.56 156.8 22540 1441 80550 1155 52.75
    下载: 导出CSV

    表  7  硫酸浸出Na2CO3焙烧渣的尾渣成分分析

    Table  7.   Chemical compositions of tailings from sulfuric acid leaching of Na2CO3 roasting slag %

    AlAsCaFeKMgSiTiVW
    0.13 0.007 5.53 0.10 0.044 0.025 0.36 48.88 0.42 0.43
    下载: 导出CSV

    表  8  水解前后溶液元素含量

    Table  8.   Element content of solution before and after hydrolysis

    体积/L溶液中各元素含量/(mg·L−1
    AlAsCaFeKMgNaSiTiVW
    水解前 0.42 37.12 0.11 463.20 49.79 30.61 62.32 7 346 336.50 9 420.0 115.90 3.21
    水解后 1.03 10.29 191.80 12.62 11.30 20.46 3 301 115.90 228.7 2.71 1.15
    下载: 导出CSV

    表  9  自生晶种制备的偏钛酸成分分析

    Table  9.   Chemical compositions of metatitanic acid prepared by in-situ seed %

    类别AlAsCaFeKMgPSiTiVW
    自制偏钛酸0.005 0.001 0.049 0.080 0.085 0.013 0.003 0.318 46.078 0.384 0.018
    工业偏钛酸0.003 0 0.021 0.085 0.070 0.005 0.067 0.021 49.556 0.473 0.005
    下载: 导出CSV
  • [1] Zhang Liping, Lv Lingling, Dong Li, et al. Research progress on resources recovery and utilization of waste-SCR-catalyst[J]. Yunnan Chemical Technology, 2019,46(8):77−83. (张立萍, 吕灵灵, 董莉, 等. 废SCR催化剂资源回收利用研究进展[J]. 云南化工, 2019,46(8):77−83. doi: 10.3969/j.issn.1004-275X.2019.08.030
    [2] Zeng Rui, Hao Yongli. Analysis on project construction pattern of abandoned SCR catalyzer recovery and utilization[J]. China Environmental Protection Industry, 2014,(9):41−45. (曾瑞, 郝永利. 废弃SCR催化剂回收利用项目建设格局的分析[J]. 中国环保产业, 2014,(9):41−45. doi: 10.3969/j.issn.1006-5377.2014.09.008
    [3] LEE Jungbin, EOM Yongseok, KIM Junhan, et al. Regeneration of waste SCR catalyst by air lift loop reactor[J]. Journal of Central South University, 2013,20(5):1314−1318. doi: 10.1007/s11771-013-1617-5
    [4] Zeng Rui. Reclamation and recycling of SCR waste catalyzer[J]. China Environmental Protection Industry, 2013,(2):39−42. (曾瑞. 浅谈SCR废催化剂的回收再利用[J]. 中国环保产业, 2013,(2):39−42. doi: 10.3969/j.issn.1006-5377.2013.02.014
    [5] Zhang Bingbing, Yu Dandan, Wang Fang, et al. Technology of vanadium recovery from deactivated denitration catalyst[J]. Henan Science, 2016,34(6):866. (张兵兵, 于丹丹, 王芳, 等. 废脱硝催化剂中五氧化二钒回收工艺研究[J]. 河南科学, 2016,34(6):866.
    [6] Zheng Yilin, Dai Shijin, Zhao Youcai, et al. Selective leaching of vanadium and tungsten from spent SCR catalyst using organic acids[J]. Environmental Protection of Chemical Industry, 2020,40(2):162−168. (郑怡琳, 戴世金, 赵由才, 等. 废SCR催化剂中钒和钨的有机酸浸出[J]. 化工环保, 2020,40(2):162−168. doi: 10.3969/j.issn.1006-1878.2020.02.009
    [7] Zeng Xiaoyi, Mei Qizheng, Sun Zhengyuan. High efficient recycling of TiO2 from waste SCR catalyst by Na2CO3 roasting and water leaching[J]. Nonferrous Metals(Extractive Metallurgy), 2019,(12):23−28. (曾小义, 梅其政, 孙正圆. 废SCR催化剂碳酸钠焙烧浸出回收二氧化钛[J]. 有色金属(冶炼部分), 2019,(12):23−28.
    [8] Liu Zilin, Wang Baodong, Ma Ruixin, et al. Study on mechanism of recovery of tungsten and vanadium from waste SCR catalysts by soda roasting[J]. Inorganic Chemicals Industry, 2016,48(7):63−67. (刘子林, 王宝冬, 马瑞新, 等. 废SCR催化剂钠化焙烧回收钨和钒的机理探究[J]. 无机盐工业, 2016,48(7):63−67.
    [9] Zhou Kai, Lu Bin, Wang Sheng, et al. Research on recovery process of Ti, V and W in waste SCR denitration catalyst[J]. Electric Power Technology and Environmental Protection, 2019,35(4):8−13. (周凯, 陆斌, 王圣, 等. 废弃SCR脱硝催化剂中Ti、V、W元素回收工艺研究[J]. 电力科技与环保, 2019,35(4):8−13. doi: 10.3969/j.issn.1674-8069.2019.04.003
    [10] (李小文. 废SCR催化剂高压碱浸回收钨钒的工艺研究[D]. 赣州: 江西理工大学, 2019.)

    Li Xiaowen. Recovery of tungsten and vanadium from waste SCR catalyst by high pressure alkaline leaching[D]. Ganzhou: Jiangxi University of Science and Technology, 2019.
    [11] Chen Yang, Jin Ke, Chen Jiayu, et al. Leaching of V and W from spent SCR catalyst-effect of agitation on leaching rates[J]. Journal of Functional Materials, 2020,51(3):3001−3006. (陈洋, 金科, 陈嘉宇, 等. 废脱硝催化剂钒、钨的浸出-搅拌对浸出率的影响[J]. 功能材料, 2020,51(3):3001−3006.
    [12] Tang Dingling, Song Hao, Liu Dingding, et al. Study on leaching kinetics of extracting vanadium and tungsten by sodium hydroxide from spent SCR catalyst[J]. Chinese Journal of Environmental Engineering, 2017,11(2):1093−1100. (唐丁玲, 宋浩, 刘丁丁, 等. 废弃脱硝催化剂碱浸提取钒和钨的浸出动力学研究[J]. 环境工程学报, 2017,11(2):1093−1100. doi: 10.12030/j.cjee.201509258
    [13] Zhang Chen, Liu Jianhua, Yang Xiaobo, et al. Ultrasound assisted enhancement in vanadium and tungsten leaching from waste SCR catalyst[J]. Functional Materials, 2015,46(20):20063−20067. (张琛, 刘建华, 杨晓博, 等. 超声强化废SCR催化剂浸出V和W的研究[J]. 功能材料, 2015,46(20):20063−20067. doi: 10.3969/j.issn.1001-9731.2015.20.014
    [14] Li Wenjun, Xu Tengfei, Liu Xuesong, et al. Effect comparison of microwave heating and muffle heating on treatment of spent SCR catalyst[J]. Environmental Protection of Chemical Industry, 2017,37(5):572−575. (李文军, 许腾飞, 刘雪松, 等. 微波焙烧法与马弗炉焙烧法处理废脱硝催化剂的效果比较[J]. 化工环保, 2017,37(5):572−575. doi: 10.3969/j.issn.1006-1878.2017.05.015
    [15] Chen Guangyu, Kang Jialong, Liu Junjie, et al. Study on direct alloying of waste SCR catalysts[J]. Iron Steel Vanadium Titanium, 2018,39(6):99−102. (陈广玉, 康嘉龙, 刘俊杰, 等. 废弃脱硝催化剂直接合金化研究[J]. 钢铁钒钛, 2018,39(6):99−102. doi: 10.7513/j.issn.1004-7638.2018.06.016
    [16] Piao Rongxun, Ma Lan, Yang Shaoli, et al. Experimental study on preparation of Cr-containing Ti-Al based alloys by aluminothermic reduction-remelting of waste SCR Ti-based denitration catalyst[J]. Iron Steel Vanadium Titanium, 2019,40(2):79−86. (朴荣勋, 马兰, 杨绍利, 等. 废SCR钛基脱硝催化剂铝热还原重熔制备含铬钛铝基合金的试验研究[J]. 钢铁钒钛, 2019,40(2):79−86. doi: 10.7513/j.issn.1004-7638.2019.02.013
  • 加载中
图(9) / 表(9)
计量
  • 文章访问数:  459
  • HTML全文浏览量:  139
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-07
  • 刊出日期:  2021-02-10

目录

    /

    返回文章
    返回