Preparation and performance optimization of Co-doped high-titanium blast furnace slag as photocatalytic material
-
摘要: 为了实现以非提钛方法对高钛型高炉渣的综合利用,利用其含TiO2可制备光催化剂的特点,以攀钢高钛型高炉渣掺杂硝酸钴为原料,采用液相法掺杂并烧结制备掺杂Co的光催化剂,在紫外光下,考察了煅烧温度、掺杂量及煅烧时间对模拟污染物亚甲基蓝溶液降解率的影响。结果表明:在煅烧温度600 ℃、Co-Ti质量掺杂比(w(Co): w(Ti))0.03、煅烧时间2 h时,制备的掺杂Co光催化剂降解率达到89.0%,比未掺杂之前提高了32.4%。Abstract: In order to realize the comprehensive utilization of high-titanium blast furnace slag without titanium extraction, cobalt doped photocatalyst was prepared via liquid phase method followed by sintering using Pangang high-titanium blast furnace slag and cobalt nitrate as raw materials. The influences of calcination temperature, Co doping amount and calcination time on the degradation rate of simulated pollutant methylene blue solution were investigated under ultraviolet light. The results show that the degradation rate of 89.0% can be obtained for the Co-doped photocatalyst roasted at 600 °C for 2 h with mass ratio of Co to Ti of 0.03, 32.4% higher than that of the photocatalyst without Co doping.
-
Key words:
- high titanium blast furnace slag /
- cobalt nitrate /
- photocatalyst /
- degradation rate
-
表 1 高钛型高炉渣的主要成分
Table 1. Main compositions of high titanium blast furnace slag
% TiO2 Fe2O3 SiO2 MgO Al2O3 CaO V2O5 F 23.16 2.64 24.01 7.47 13.49 27.19 0.82 0.12 表 2 正交试验结果与分析
Table 2. Results and analysis of orthogonal tests
试验号 Aw(Co)∶
w(Ti)B煅烧温
度/℃空列 C煅烧时
间/h降解效
率/%1 1(0.02) 1(600) 1 1(1) 75.26 2 1(0.02) 2(700) 2 2(2) 70.53 3 1(0.02) 3(800) 3 3(3) 65.21 4 2(0.03) 1(600) 2 3(3) 79.22 5 2(0.03) 2(700) 3 1(1) 70.22 6 2(0.03) 3(800) 1 2(2) 79.20 7 3(0.04) 1(600) 3 2(2) 75.18 8 3(0.04) 2(700) 1 3(3) 60.28 9 3(0.04) 3(800) 2 1(1) 70.25 k1 70.33 76.55 71.58 71.91 k2 76.21 67.01 73.33 74.97 k3 68.57 71.55 70.20 68.24 极差R 7.64 9.54 3.13 6.73 因素主→次 BAC 最优方案 B1A2C2 -
[1] Huo Hongying, Liu Guoqin, Zou Min, et al. Discussion for comprehensive utilization of Pangang high titanium blast furnace slag[J]. Rare Metal Materials and Engineering, 2010,39(S1):134−137. (霍红英, 刘国钦, 邹敏, 等. 攀钢高钛型高炉渣综合利用探讨[J]. 稀有金属材料与工程, 2010,39(S1):134−137. [2] (林婵. TiO2纳米材料的制备改性及其光催化性能研究[D]. 青岛: 中国海洋大学, 2014.)Lin Chan. Preparation, Modification of TiO2 nanomaterials and their photocatalytic performance study[D]. Qingdao: Ocean University of China, 2014. [3] (施丽丽. 含钛高炉渣物理化学特性的实验研究[D]. 贵阳: 贵州大学, 2009.)Shi Lili. Experimental study on physical chemistry characteristics of titanium-bearing blast furnace slag[D]. Guiyang: Guizhou University, 2009. [4] Yang Li, Yi Yue, Que Zaiqing, et al. Preparation and visible-light photocatalytic property of nanostructured Fe-doped TiO2 from titanium containing electric furnace molten slag[J]. International Journal of Minerals Metallurgy and Materials, 2013,20(10):1012−1020. doi: 10.1007/s12613-013-0828-y [5] Guo Yu, Jin Yujia, Wu Hongmei, et al. Preparation and photocatalytic properties of supported TiO2 photocatalytic material[J]. Spectroscopy and Spectral Analysis, 2015,(6):1677−1681. (郭宇, 金玉家, 吴红梅, 等. 负载型二氧化钛光催化材料的制备及其光催化性能研究[J]. 光谱学与光谱分析, 2015,(6):1677−1681. doi: 10.3964/j.issn.1000-0593(2015)06-1677-05 [6] Yang He, Xue Xiangxin, Zuo Liang, et al. Photocatalytic degradation of blue with blast furnace slag containing titania[J]. The Chinese Journal of Process Engineering, 2004,(3):265−268. (杨合, 薛向欣, 左良, 等. 含钛高炉渣催化剂光催化降解亚甲基蓝[J]. 过程工程学报, 2004,(3):265−268. doi: 10.3321/j.issn:1009-606X.2004.03.014 [7] Ma Xingguan, Ma Zhixiao, Yang He, et al. Experimental study on the degradation of the furfural waste water with titaniferous blast furmace slag[J]. Environmental Protection Science, 2009,35(5):15. (马兴冠, 马志孝, 杨合, 等. 含钛高炉渣光催化降解糠醛废水[J]. 环境保护科学, 2009,35(5):15. doi: 10.3969/j.issn.1004-6216.2009.05.005 [8] Wang Hui, Xue Xiangxin, Yang He, et al. Study of preparation of V5+ doped titanium-bearing blast furnace slag and its antibacterial capability[J]. Iron Steel Vanadium Titanium, 2009,30(4):6−10. (王辉, 薛向欣, 杨合, 等. V5+掺杂含钛高炉渣光催化抗菌材料的制备及抗菌性能研究[J]. 钢铁钒钛, 2009,30(4):6−10. [9] Zhang Shiqiu, Wang Weiqing. Manganese nodilied Ti-bearing blast furnace slag type photocatalyst degrade Cr6+ in waste water[J]. Metal Mine, 2017,(5):181−184. (张士秋, 王维清. 锰改性含钛高炉渣光催化剂降解废水中的Cr6+[J]. 金属矿山, 2017,(5):181−184. doi: 10.3969/j.issn.1001-1250.2017.05.035 [10] Zhou Mi, Yang He, Piao Erjun, et al. Effect of rare earth metal doping on photocatalytic performance of titania-bearing blast furnace slag[J]. Iron and Steel, 2010,45(10):90−94. (周密, 杨合, 卜二军, 等. 掺杂稀土金属对含钛高炉渣光催化性能影响[J]. 钢铁, 2010,45(10):90−94. [11] (中国国家标准化管理委员会, GB/T 23762—2009 光催化材料水溶液体系净化测试方法[S]. 北京: 中国标准出版社, 2010.)Standardization administration of China, GB/T 23762—2009 test method for purification of aqueous solution systems of photocatalytic materials[S]. Beijing: China Standard Press, 2010. [12] Li Qi, Han Lijuan, Liu Gang, et al. Synthesis, characterization and degradation performance of V-N-TiO2 nanoparticle photocatalysts[J]. Environmental Chemistry, 2013,15(6):1073−1080. (李琪, 韩立娟, 刘刚, 等. 钒-氮共掺杂TiO2的合成、表征及光催化性能[J]. 环境化学, 2013,15(6):1073−1080. [13] Fu Chunlin, Wei Xiwen. Recent advances in the crystalline phase transition of titania[J]. Materials Review, 1999,(3):3−5. (符春林, 魏锡文. 二氧化钛晶型转变研究进展[J]. 材料导报, 1999,(3):3−5. [14] (魏雨. 二氧化钛的制备、光催化性能及其形成机理研究[D]. 长春: 吉林大学, 2018.)Wei Yu. Study on preparation, photocatalytic properties and formation mechanism of TiO2[D]. Changchun: Jilin University, 2018. [15] Huihong Lü, Ning Li, Xingrong Wu, et al. A Novel conversion of Ti-bearing blast-furnace slag into water splitting photocatalyst with visible- light response[J]. Metallurgical and Materials Transactions: B, 2013,(44):1317−1321. [16] XiangJun Gong, Feng Jia, Rong Liu, et al. Study on preparation and photocatalytic activity of photocatalyst made from Ti-bearing blast furnace slag[J]. Applied Mechanics and Materials, 2014,(526):33−38.