留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

皮胶原为模板制备纤维状钛锂离子筛前驱体

吴远彬 杨茹 邓胜连 张理元

吴远彬, 杨茹, 邓胜连, 张理元. 皮胶原为模板制备纤维状钛锂离子筛前驱体[J]. 钢铁钒钛, 2021, 42(2): 53-59. doi: 10.7513/j.issn.1004-7638.2021.02.010
引用本文: 吴远彬, 杨茹, 邓胜连, 张理元. 皮胶原为模板制备纤维状钛锂离子筛前驱体[J]. 钢铁钒钛, 2021, 42(2): 53-59. doi: 10.7513/j.issn.1004-7638.2021.02.010
Wu Yuanbin, Yang Ru, Deng Shenglian, Zhang Liyuan. Preparation of fibrous titanium-lithium ion sieve precursor with skin collagen as the template[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(2): 53-59. doi: 10.7513/j.issn.1004-7638.2021.02.010
Citation: Wu Yuanbin, Yang Ru, Deng Shenglian, Zhang Liyuan. Preparation of fibrous titanium-lithium ion sieve precursor with skin collagen as the template[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(2): 53-59. doi: 10.7513/j.issn.1004-7638.2021.02.010

皮胶原为模板制备纤维状钛锂离子筛前驱体

doi: 10.7513/j.issn.1004-7638.2021.02.010
基金项目: 四川省科技计划项目(项目号2019YJ0383)
详细信息
    作者简介:

    吴远彬(1992—),男,四川西昌人,硕士生,实习研究员,主要从事锂吸附材料研究,E-mail:654094849@qq.com

    通讯作者:

    张理元,博士,副教授,E-mail:zhangliyuansir@126.com

  • 中图分类号: TF823,TQ424

Preparation of fibrous titanium-lithium ion sieve precursor with skin collagen as the template

  • 摘要: 为解决传统的粉末状钛锂离子筛渗透性和流动性差的问题,以皮胶原作为模板剂,廉价易得的Ti(SO4)2为钛源,乙酸锂为锂源,经皮胶原负载钛、锂及固相反应制备具有纤维结构的钛锂离子筛前驱体(Li2TiO3)。探究加入不同试剂、不同处理方法、不同pH值等因素对合成钛锂离子筛前驱体(Li2TiO3)的影响。采用扫描电子显微镜和X射线衍射仪对试样进行了表征。结果表明:加入单宁,控制试验pH=4.0在750 ℃条件下保温8 h制备的钛锂离子筛前驱体纤维结构较好,晶相组成为单斜结构β-Li2TiO3
  • 图  1  皮胶原的SEM图片

    Figure  1.  SEM image of skin collagen

    图  2  不同处理方法得到的样品SEM图像

    Figure  2.  SEM images of the samples prepared with different approaches

    图  3  加入不同试剂后样品的SEM图像

    Figure  3.  SEM images of the samples after adding various reagents

    图  4  加入单宁后在750℃条件下煅烧8 h制备的Li2TiO3的XRD图谱

    Figure  4.  XRD patterns of Li2TiO3 prepared by calcining at 750 oC for 8 h after adding tannin

    图  5  不同pH处理的样品的SEM图像

    Figure  5.  SEM images of the samples with different pH values

    表  1  主要试验试剂

    Table  1.   The main reagents

    化学试剂规格生产厂家规格
    皮胶原 分析纯(AR) 中国林业科学研究院林产化学工业研究所科技开发总公司单宁化工实验室
    柠檬酸三钠 分析纯(AR) 成都市科龙化工试剂厂
    柠檬酸(一水) 分析纯(AR) 成都市科龙化工试剂厂
    氯化钠 分析纯(AR) 成都金山化学试剂有限公司
    甲酸 分析纯(AR) 成都金山化学试剂有限公司
    无水乙醇 分析纯(AR) 成都金山化学试剂有限公司
    硫酸钛 分析纯(AR) 国药集团化学试剂有限公司
    碳酸氢钠 分析纯(AR) 成都市科龙化工试剂厂
    乙酸锂 分析纯(AR) 山东西亚化学工业有限公司
    硫酸 分析纯(AR) 成都金山化学试剂有限公司
    三乙醇胺 分析纯(AR) 成都金山化学试剂有限公司
    单宁 分析纯(AR) 成都市新都区木兰镇工业开发区
    戊二醛25% 分析纯(AR) 成都市科隆花心品有限公司
    下载: 导出CSV

    表  2  主要试验仪器

    Table  2.   The main experimental instrument

    试验仪器型号生产厂家
    扫描电子显微镜 VEGA3SBH TESCAN
    磁力搅拌器 HJ-4 常州未来仪器制造有限公司
    pH计 pH-902 常州爱德克斯仪器仪表有限公司
    ZNCL-GS智能磁力搅拌器 ZNCL-GS240*150 上海予申仪器有限公司
    电热鼓风干燥箱 101-2BS 天津宏诺仪器有限公司
    优普系列
    超纯水器
    UPH-IV-10T 成都超纯科技有限公司
    精密节能电炉 SX2-5-12TP 济南精密科学仪器仪表有限公司
    低速大容量
    离心机
    TDL-5-A 上海安亭科学仪器厂
    超声波清洗机 QT系列 天津市瑞普电子仪器公司
    电子天平 JA5003 上海舜宇恒平科学仪器有限公司
    X射线衍射仪 DX-2700 丹东浩圆仪器有限公司
    下载: 导出CSV
  • [1] Xu X, Chen Y, Wan P, et al. Extraction of lithium with functionalized lithium ion-sieves[J]. Progress in Materials Science, 2016,(84):276−313.
    [2] Gruber P W, Medina P A, Keoleian G A, et al. Global lithium availability, a constraint for electric vehicles[J]. Journal of Industrial Ecology, 2011,15(5):760−775. doi: 10.1111/j.1530-9290.2011.00359.x
    [3] Grosjean C, MirandaI P H, Perrin M, et al. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry[J]. Renewable and Sustainable Energy Reviews, 2012,16(3):1735−1744. doi: 10.1016/j.rser.2011.11.023
    [4] Ogawa Y, Koibuchi H, Suto K, et al. Effects of the chemical compositions of salars de Uyuni and Atacama brines on lithium concentration during evaporation[J]. Resource Geology, 2014,4(2):91−101.
    [5] Meshram P, Pandey B D, Mankhand T R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review[J]. Hydrometallurgy, 2014,150:192−208. doi: 10.1016/j.hydromet.2014.10.012
    [6] Liu Yuanhui, Deng Tianlong. Progresses on the process and technique of lithium recovery from salt lake brines around the world[J]. World Sci-Tech R & D, 2006,28(5):69−75. (刘元会, 邓天龙. 国内外从盐湖卤水中提锂工艺技术研究进展[J]. 世界科技研究与发展, 2006,28(5):69−75. doi: 10.3969/j.issn.1006-6055.2006.05.010
    [7] Lemaire J, Svecova L, Lagallarde E, et al. Lithium recovery from aqueous solution by sorption/desorption[J]. Hydrometallurgy, 2014,143:1−11. doi: 10.1016/j.hydromet.2013.11.006
    [8] Wu X, Wen Z, Lin B, et al. Sol-gel synthesis and sintering of nano-size Li2TiO3 powder[J]. Materials Letters, 2008,62(6−7):837−839. doi: 10.1016/j.matlet.2007.06.073
    [9] Chitrakar R, Makita Y, Ooi K, et al. Synthesis of iron-doped manganese oxides with an ion-sieve property: lithium adsorption from bolivian brine[J]. Industrial & Engineering Chemistry Research, 2014,53(9):3682−3688.
    [10] Sun S Y, Cai L J, Nie X Y, et al. Separation of magnesium and lithium from brine using a desal nanofiltration membrane[J]. Journal of Water Process Engineering, 2015,7:210−217. doi: 10.1016/j.jwpe.2015.06.012
    [11] Song J, Li X M, Zhang Y, et al. Hydrophilic nanoporous ion-exchange membranes as a stabilizing barrier for liquid-liquid membrane extraction of lithium ions[J]. Journal of Membrane Science, 2014,471:372−380. doi: 10.1016/j.memsci.2014.08.010
    [12] Ji Z Y, Chen Q B, Yuan J S, et al. Preliminary study on recovering lithium from high Mg2+/Li+ ratio brines by electrodialysis[J]. Separation and Purification Technology, 2017,172:168−177. doi: 10.1016/j.seppur.2016.08.006
    [13] Wang L, Meng C G, Ma W. Study on Li+ uptake by lithium ion-sieve via the pH techniqu[J]. Colloids & Surfaces A-Physicochemical & Engineering Aspects, 2009,334(1−3):34−39.
    [14] Zhang Q H, Li S, Sun S Y, et al. Lithium selective adsorption on 1-D MnO nanostructure ion-sieve[J]. Advanced Powder Technology, 2009,20(5):432−437. doi: 10.1016/j.apt.2009.02.008
    [15] Bai C, Guo M, Zhang H F, et al. The research progress of extracting lithium from brine by lithium ion sieve[J]. Chemical Industry and Engineering Progress, 2017,36(3):802−809.
    [16] Shi Xichang, Yu Liangliang, Chen Baizhen, et al. Preparation and adsorption property of spinel-type lithium ion-sieve[J]. Journal of Central South University (Science and Technology), 2011,42(8):2198−2203. (石西昌, 余亮良, 陈白珍, 等. 尖晶石型锂离子筛的制备及其吸附性能[J]. 中南大学学报(自然科学版), 2011,42(8):2198−2203.
    [17] Chitrakar R, Kanoh H, Miyai Y, et al. Recovery of lithium from seawater using manganese oxide adsorbent (H1.6Mn1.6O4) derived from Li1.6Mn1.6O4[J]. Industrial & Engineering Chemistry Research, 2001,40(9):2054−2058.
    [18] Zhang L Y, Zhou D L, He G, et al. Synthesis of H2TiO3-lithium adsorbent loaded on ceramic foams[J]. Materials Letters, 2015,145:351−354. doi: 10.1016/j.matlet.2015.01.142
    [19] Park K, Benayad A, Kang D, et al. Nitridation-driven conductive Li4Ti5O12 for lithium ion batteries[J]. Journal of the American Chemical Society, 2008,130(45):14930−14931. doi: 10.1021/ja806104n
    [20] Xu X, Zhou Y, Fan M, et al. Lithium adsorption performance of a three-dimensional porous H2TiO3-type lithium ion-sieve in strong alkaline Bayer liquor[J]. RSC Advances, 2017,7:18883−18891. doi: 10.1039/C7RA01056G
    [21] Nugroho A, Kim S J, Chung K Y, et al. Facile synthesis of nanosized Li4Ti5O12 in supercritical water[J]. Electrochemistry Communications, 2011,13(6):650−653. doi: 10.1016/j.elecom.2011.03.037
    [22] Onodera Y, Iwasaki T, Hayashi H, et al. A new inorganic material with high selective adsorbability for Li+[J]. Journal of the Ceramic Society of Japan, 1989,97(1129):888−894. doi: 10.2109/jcersj.97.888
    [23] Zhang L F, Chen B Z, Shi X C, et al. Synthesis and adsorption property of H2TiO3 type adsorbent[J]. The Chinese Journal of Nonferrous Metals, 2010,20(9):1850−1854.
    [24] Chung W J, Torrejos R E C, Park M J, et al. Continuous lithium mining from aqueous resources by an adsorbent filter with a 3D polymeric nanofiber network infused with ion sieves[J]. Chemical Engineering Journal, 2017,309:49−62. doi: 10.1016/j.cej.2016.09.133
    [25] Deng D H, Wu H, Liao X P, et al. Synthesis of unique mesoporous ZrO2-carbon fiber from collagen fiber[J]. Microporous and Mesoporous Materials, 2008,116(1−3):705−709. doi: 10.1016/j.micromeso.2008.05.018
    [26] Cai Li. Synthesis and photo-catalytic activity of mesoporous TiO2 fiber using collagen fiber as a template[J]. Journal of Functional Materials, 2013,44(23):3447−3451. (蔡莉. 胶原纤维为模板制备介孔TiO2纤维及光催化活性研究[J]. 功能材料, 2013,44(23):3447−3451. doi: 10.3969/j.issn.1001-9731.2013.23.020
    [27] Zhang Liyuan, You Yaohui, You Jia, et al. Preparation and photocatalytic performance of fibrous Gd-doped TiO2 using collagen fiber as template[J]. Journal of Synthetic Crystals, 2019,48(2):312−320. (张理元, 由耀辉, 尤佳, 等. 胶原纤维为模板制备Gd掺杂纤维状二氧化钛及光催化性能研究[J]. 人工晶体学报, 2019,48(2):312−320. doi: 10.3969/j.issn.1000-985X.2019.02.024
    [28] Zhang Bin, Chen Tijun, Wang Lingyun, et al. Study on ultrasonic dispersion of graphene nanoplatelets[J]. Journal of Functional Materials, 2019,50(8):8133−8139. (张斌, 陈体军, 王凌云, 等. 石墨烯纳米片超声分散的研究[J]. 功能材料, 2019,50(8):8133−8139. doi: 10.3969/j.issn.1001-9731.2019.08.019
    [29] Schofield P, Mbugua D M, Pell A N. Analysis of condensed tannins: a review[J]. Animal Feed Science and Technology, 2001,91(1−2):21−40. doi: 10.1016/S0377-8401(01)00228-0
    [30] Shi B, He X Q, Haslam E. Pofyphenol-Gelatin interaction[J]. Journal of American Leather Chemists Association, 1994,89(4):98−104.
    [31] Tao Yuhu. Preparation and properties of triethanolamine modified basalt fiber/natural rubber composites[J]. Science & Technology Vision, 2018,(10):256−258. (陶玉虎. 三乙醇胺改性玄武岩纤维/天然橡胶复合材料的制备及性能研究[J]. 科技视界, 2018,(10):256−258.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  37
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-24
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回