Study on the properties of titanium bearing weather-proof building steel
-
摘要: 研究了耐候建筑钢Q235NH中添加不同含量Ti后试样的显微组织、耐腐蚀性能和耐磨损性能。结果表明:随钛含量逐渐增加,试样的腐蚀电位先正移后负移、磨损体积表现为先减后增,试样的耐腐蚀性能和耐磨损性能均先提高后下降。随Ti含量从0增至0.09%,试样组织逐渐细化;当Ti含量从0.09%增至0.15%,试样组织未发生明显细化,但内部氮化物颗粒显著粗化。与未添加Ti相比,试样的腐蚀电位正移78 mV、磨损体积减小7.2×10−3 mm3。基于改善耐腐蚀性能和耐磨损性能出发,Q235NH耐候建筑钢中合金元素Ti的含量优选为0.09%。Abstract: In this paper, the corrosion resistance and wear resistance of Q235NH building steel specimens with different Ti content were studied. The results show that with the increase of titanium content, the corrosion potential of the sample first moves forward and then moves negative, and the wear volume first decreases and then increases. Both of the corrosion resistance and wear resistance of the sample present a increase followed by decrease. With the Ti content increasing from 0 to 0.09%, the microstructure of the sample is gradually refined. When Ti content increases from 0.09% to 0.15%, the microstructure of the sample is not refined, but the internal nitride particles are coarsened. The corrosion potential of the sample positively shifts by 78 mV and the wear volume decreases by 7.2 × 10−3 mm3, compared with that without Ti. Based on the improvement of corrosion resistance and wear resistance, the optimum content of Ti in Q235NH weather-proof building steel is at 0.09%.
-
Key words:
- weather-proof building steel /
- Q235NH /
- titanium content /
- corrosion resistance /
- wear resistance
-
表 1 试样化学成分
Table 1. Chemical compositions of the alloy specimens
% 编号 C Si Mn Cr Cu Ti S P Fe 试样1 0.12±0.02 0.25±0.05 0.45±0.05 0.60±0.05 0.30±0.05 0 <0.035 <0.035 Bal. 试样2 0.12±0.02 0.25±0.05 0.45±0.05 0.60±0.05 0.30±0.05 0.03 <0.035 <0.035 Bal. 试样3 0.12±0.02 0.25±0.05 0.45±0.05 0.60±0.05 0.30±0.05 0.06 <0.035 <0.035 Bal. 试样4 0.12±0.02 0.25±0.05 0.45±0.05 0.60±0.05 0.30±0.05 0.09 <0.035 <0.035 Bal. 试样5 0.12±0.02 0.25±0.05 0.45±0.05 0.60±0.05 0.30±0.05 0.12 <0.035 <0.035 Bal. 试样6 0.12±0.02 0.25±0.05 0.45±0.05 0.60±0.05 0.30±0.05 0.15 <0.035 <0.035 Bal. 表 2 不同钛含量试样的实测腐蚀电位
Table 2. Corrosion potential of samples with different titanium contents
编号 腐蚀电位/V 平行试样1 平行试样1 平行试样1 平均值 试样1 −0.734 −0.729 −0.736 −0.733 试样2 −0.711 −0.714 −0.708 −0.711 试样3 −0.684 −0.699 −0.687 −0.690 试样4 −0.657 −0.653 −0.656 −0.655 试样5 −0.671 −0.668 −0.665 −0.668 试样6 −0.689 −0.692 −0.686 −0.689 表 3 试样磨损体积测试结果
Table 3. Wear volume test results of samples
编号 腐蚀体积×103/mm3 平行试样1 平行试样1 平行试样1 平均值 试样1 18.4 19.6 18.7 18.9 试样2 16.1 15.4 15.7 15.7 试样3 13.5 13.9 14.1 13.8 试样4 11.5 11.8 11.9 11.7 试样5 12.2 12.8 12.4 12.5 试样6 13.8 14.3 13.7 13.9 -
[1] Ye Zhanchun, Guan Chunlong. Study on corrosion resistance and wear resistance of new vanadium-containing weather proof steel for building[J]. Iron Steel Vanadium Titanium, 2019,40(4):116−120. (叶占春, 关春龙. 含钒新型建筑耐候钢的耐蚀及耐磨性能研究[J]. 钢铁钒钛, 2019,40(4):116−120. doi: 10.7513/j.issn.1004-7638.2019.04.022 [2] Mu Caiping, Li Jiang. Effect of normalizing on properties of weathering steel containing strontium for building[J]. Hot Working Technology, 2018,47(8):212−215. (慕彩萍, 李江. 正火对含锶建筑耐候钢性能的影响[J]. 热加工工艺, 2018,47(8):212−215. [3] Zhang Liqin, Zhang Kaiguang. Study on microstructure and properties of hot rolled weathering construction steel containing Nb and Ti[J]. Hot Working Technology, 2018,47(21):49−52, 56. (张莉芹, 张开广. 含铌钛耐候建筑钢热轧态组织与性能研究[J]. 热加工工艺, 2018,47(21):49−52, 56. [4] Wu Jianchun, Fang Yuan. Corrosion behavior of strip casting B480GNQR weathering steel[J]. Materials for Mechanical Engineering, 2019,43(10):47−52. (吴建春, 方园. 薄带连铸B480GNQR耐候钢的腐蚀行为[J]. 机械工程材料, 2019,43(10):47−52. doi: 10.11973/jxgccl201910010 [5] Chen Jian, Chen Yuxin, Huang Tao, et al. Corrosion resistance of weathering steels with different cr content in simulated high temperature and humidity environment[J]. Materials for Mechanical Engineering, 2019,43(4):53−58. (陈健, 陈玉鑫, 黄涛, 等. 不同铬含量耐候钢在高湿热模拟环境中的耐腐蚀性能[J]. 机械工程材料, 2019,43(4):53−58. doi: 10.11973/jxgccl201904012 [6] Fu Guiqin, Li Dongliang, Zhu Miaoyong. Effect of SO2 on corrosion behavior of Cr-containing weathering steel in simulated marine atmosphere[J]. Iron & Steel, 2018,53(12):94−99. (付贵勤, 李东亮, 朱苗勇. SO2对海洋大气环境中含铬耐候钢腐蚀行为的影响[J]. 钢铁, 2018,53(12):94−99. [7] Gao Lijun, Yang Jianwei, Zhang Xiazhou, et al. Corrosion behavior of refractory weatherproof steel in industrial and marine atmosphere environments[J]. Shanghai Metal, 2019,41(3):25−28. (高立军, 杨建炜, 张侠洲, 等. 耐火耐候钢在工业和海洋大气环境中的腐蚀行为研究[J]. 上海金属, 2019,41(3):25−28. doi: 10.3969/j.issn.1001-7208.2019.03.005 [8] Guo Zhihui. Initial corrosion behavior of weathering steel used for construction in atmosphere environment[J]. Foundry Technology, 2014,35(7):1408−1410. (郭智辉. 大气环境下建筑用耐候钢的初期腐蚀行为研究[J]. 铸造技术, 2014,35(7):1408−1410.