留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

白云鄂博矿磁场强化还原的矿相演变规律

张旭东 金永丽

张旭东, 金永丽. 白云鄂博矿磁场强化还原的矿相演变规律[J]. 钢铁钒钛, 2021, 42(2): 139-145. doi: 10.7513/j.issn.1004-7638.2021.02.023
引用本文: 张旭东, 金永丽. 白云鄂博矿磁场强化还原的矿相演变规律[J]. 钢铁钒钛, 2021, 42(2): 139-145. doi: 10.7513/j.issn.1004-7638.2021.02.023
Zhang Xudong, Jin Yongli. Evolution of mineral facies in magnetic field enhanced reduction of Bayan Obo ore[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(2): 139-145. doi: 10.7513/j.issn.1004-7638.2021.02.023
Citation: Zhang Xudong, Jin Yongli. Evolution of mineral facies in magnetic field enhanced reduction of Bayan Obo ore[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(2): 139-145. doi: 10.7513/j.issn.1004-7638.2021.02.023

白云鄂博矿磁场强化还原的矿相演变规律

doi: 10.7513/j.issn.1004-7638.2021.02.023
基金项目: 国家自然科学基金(含铁矿物低温还原的电磁强化机理,项目号:51464039) ;内蒙古自然科学基金(磁场强化低品位白云鄂博矿固态还原的基础研究,项目号:2019MS05010)
详细信息
    作者简介:

    张旭东(1996—),男,硕士研究生

    通讯作者:

    金永丽( 1973—),女,内蒙古包头人,在读博士,主要从事白云鄂博矿铁铌稀土共生矿绿色冶金的研究,E-mail:jinyongli731112@126.com

  • 中图分类号: TF041, TF55

Evolution of mineral facies in magnetic field enhanced reduction of Bayan Obo ore

  • 摘要: 以低温直接还原工艺为基础,在1 223 K,B=1.02 T条件下,对白云鄂博含碳球团进行磁场强化还原试验,通过考察铁矿物的还原效率和稀土矿物的矿相演变规律,来研究磁场对白云鄂博矿中铁氧化物还原以及稀土相转变的作用。结果表明:磁场可以促进铁氧化物的还原,还原进行到60 min时,试样金属化率可以达到90.23%,与无磁条件相比,金属化率增加了52.82个百分点;磁场加快了氟碳铈矿以及独居石的分解,同时可以促进CaO·2RE2O3·3SiO2和RE2O3·2SiO2的生成。
  • 图  1  白云鄂博原矿X射线衍射图谱

    Figure  1.  X-ray diffraction pattern of Baiyunebo ore

    图  2  磁场还原炉示意

    Figure  2.  Schematic diagram of magnetic field reduction furnace

    图  3  不同还原时间X射线衍射分析

    Figure  3.  X-ray diffraction analysis of samples with different reduction time

    图  4  含碳料柱微观矿相

    Figure  4.  Micro phase diagram of carbon bearing material column

    图  5  还原时间30 min时试样微观形貌

    Figure  5.  Microscopic morphology of sample with 30 min reduction time

    图  6  稀土矿相转变过程

    Figure  6.  Phase transformation process of rare earth ore

    1-RECO3F;2-REOF;3-CaO·2RE2O3;3SiO2; 4-RE2O3·2SiO2;5-CaO·SiO2;6-REPO4;7-SiO2;8-CaF2;9-CaCO3;10-Ca3(PO4)2

    图  7  磁场条件下稀土相的变化

    Figure  7.  Phase change of rare earth under magnetic field

    图  8  常规条件下稀土相的变化

    Figure  8.  Phase change of rare earth under normal conditions

    表  1  白云鄂博原矿主要化学成分

    Table  1.   Main composition of raw ore in Bayan Obo %

    TFeFeOSiO2P2O5SF
    37.1712.1716.301.480.868.42
    Na2OCaOAl2O3TiO2BaOFe2O3
    0.3514.220.281.022.9039.58
    Nb2O5ThO2RE2O3MgO
    0.310.0385.840.94
    下载: 导出CSV

    表  2  焦炭粉成分

    Table  2.   Composition of coke powder %

    固定碳灰分挥发分
    80.328.9210.50.26
    下载: 导出CSV

    表  3  还原后物料的铁相组成

    Table  3.   Iron phase composition of reduced materials

    时间/ min磁场条件常规条件
    主相副相主相副相
    0Fe2O3、Fe3O4Fe2O3、Fe3O4
    5Fe2O3、Fe3O4FeOFe2O3、Fe3O4
    20FeOFeFeOFe3O4
    45FeFeOFe
    60FeFeOFe
    下载: 导出CSV

    表  4  扫描电镜图片中各点能谱分析结果

    Table  4.   Energy spectrum analysis results of dots in the scanning electron microscope images %

    序号FeCOCaSiF
    1 56.60 6.04 33.57 0.17 0.24 0
    2 86.48 6.02 2.89 0.46 0.30 0
    3 0 0 0 37.47 0 62.53
    4 3.34 81.79 10.58 0.53 0 0
    5 61.31 0 36.85 0 0 0
    6 14.39 30.70 29.10 8.15 11.80 0
    7 0 0 0 38.83 0 60.59
    8 0 83.12 12.15 3.14 0 0
    下载: 导出CSV

    表  5  不同还原时间内产物中稀土相的组成

    Table  5.   Composition of rare earth phase in the product with different reduction time

    时间/min常规条件磁场条件
    0RECO3F、REPO4、CaF2、SiO2、CaCO3RECO3F、REPO4、CaF2、SiO2、CaCO3
    5RECO3F、REPO4、REOF 、CaO·2RE2O3·3SiO2、CaF2、SiO2、Ca3(PO4)2、Ca2SiO4RECO3F、REPO4、REOF 、CaO·2RE2O3·3SiO2、CaF2、SiO2、Ca3(PO4)2、Ca2SiO4
    20RECO3F、REPO4、REOF 、CaO·2RE2O3·3SiO2、CaF2、SiO2、Ca3(PO4)2、Ca2SiO4CaO·2RE2O3·3SiO2、CaF2、Ca3(PO4)2、Ca2SiO4
    45RECO3F、CaO·2RE2O3·3SiO2 、CaF2 、Ca2SiO4、Ca3(PO4)2CaO·2RE2O3·3SiO2 、RE2O3·2SiO2、CaF2 、Ca2SiO4、Ca3(PO4)2
    60CaO·2RE2O3·3SiO2 、RE2O3·2SiO2、CaF2 、Ca2SiO4、Ca3(PO4)2CaO·2RE2O3·3SiO2 、RE2O3·2SiO2、CaF2 、Ca2SiO4、Ca3(PO4)2
    下载: 导出CSV
  • [1] Cheng Jianzhong, Che Liping. Current situation and development trend of rare earth resources exploitation in China[J]. Rare Earth, 2010,31(2):65−69,85. (程建忠, 车丽萍. 中国稀土资源开采现状及发展趋势[J]. 稀土, 2010,31(2):65−69,85. doi: 10.3969/j.issn.1004-0277.2010.02.015
    [2] Yu Yongfu. Research on comprehensive utilization of rare earth and niobium resources in Baiyunebo mine is of great significance[J]. Rare Earth Information, 2007,(8):8−9. (余永富. 白云鄂博矿稀土、铌资源综合利用研究意义重大[J]. 稀土信息, 2007,(8):8−9.
    [3] Yang Xueming, Zheng Yongfei, Yang Xiaoyong, et al. A geochemical study of an ree-rich carbonatite dyke at bayan obo, inner mongolia, northern China[J]. Acta Geologica Sinica-English Edition, 2000,74(3):605−612.
    [4] Yasuo Kanazawa, Masaharu Kamitani. Rare earth minerals and resources in the world[J]. J Alloys Compd, 2005,408:1339−1343.
    [5] Yang He, Rong Yi, Xue Xiangxin, et al. Study on direct reduction of iron recovered from Baotou rare earth tailings[J]. Chinese Journal of Rare Earth, 2012,30(4):470−475. (杨合, 荣宜, 薛向欣, 等. 包头稀土尾矿回收铁的直接还原研究[J]. 中国稀土学报, 2012,30(4):470−475.
    [6] Li Xiangdong, Lei Shutao, Li Shusheng, et al. Study on roasting process of mixed sulfuric acid of Sichuan ore and Baotou ore[J]. Rare Earth, 2015,36(5):119−122. (李向东, 雷树涛, 李树胜, 等. 四川矿和包头矿混合硫酸焙烧工艺研究[J]. 稀土, 2015,36(5):119−122.
    [7] World Steel Assoeiation. Steel statistieal yearbook 2009[M]. Brussels: World Committee on Economic Studies, 2010.
    [8] Boscolo, Padoano, Tommasi. Identification of possible dioxin emission reduction strategies in pre-existing iron ore sinter plants[J]. Ironmaking & Steelmaking, 2008,35(2):146−152.
    [9] (陈津, 林万明, 赵 晶, 等. 非焦煤冶金技术[M]. 北京: 化学工业出版社, 2007.)

    Chen Jin, Lin Wanming, Zhao Jing, et al. Metallurgical technology of non coking coal[M]. Beijing: Chemical Industry Press, 2007.
    [10] Ma Wei, Ma Rongjun, Shen Dianbang. Application and mechanism of magnetic field in metallurgy[J]. Physics, 1996,25(7):430−432,444. (马伟, 马荣骏, 申殿邦. 磁场在冶金中的应用和机理探讨[J]. 物理, 1996,25(7):430−432,444.
    [11] (张清泉. 磁场对CO气氛下Fe3O4还原为浮氏体的化学反应影响[D]. 包头: 内蒙古科技大学, 2016.)

    Zhang Qingquan. Effect of magnetic field on the chemical reaction of Fe3O4 reduction to faustite in CO atmosphere[D]. Baotou: Inner Mongolia University of Science and Technology, 2016.
    [12] (陈林. 磁场对CO气氛下Fe2O3还原为Fe3O4的影响研究[D]. 包头: 内蒙古科技大学, 2015.)

    Chen Lin. Effect of magnetic field on reduction of Fe2O3 to Fe3O4 in CO atmosphere[D]. Baotou: Inner Mongolia University of Science and Technology, 2015.
    [13] (金永丽. 含铁矿物低温还原的磁场强化机制[D]. 上海: 上海大学, 2019.)

    Jin Yongli. Magnetic field strengthening mechanism of low temperature reduction of iron bearing minerals[D]. Shanghai : Shanghai University, 2019.
    [14] Jin Yongli, Han Futie, Yu Hai, et al. Effect of magnetic field on reduction of iron oxides containing SiO2 and CaO[J]. Iron Steel Vanadium Titanium, 2018,39(6):103−109. (金永丽, 韩福铁, 于海, 等. 磁场对含SiO2和CaO的铁氧化物还原的影响[J]. 钢铁钒钛, 2018,39(6):103−109. doi: 10.7513/j.issn.1004-7638.2018.06.017
    [15] Jin Yongli, Yu Hai, Zhang Jieyu, et al. Effect of magnetic field on reduction of iron oxide containing CaO[J]. Acta Metallurgica Sinica, 2019,55(3):410−416. (金永丽, 于海, 张捷宇, 等. 磁场对含CaO铁氧化物还原的影响[J]. 金属学报, 2019,55(3):410−416. doi: 10.11900/0412.1961.2018.00492
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  31
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回