留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轧/锻态高品质特殊钢退火软化工艺与布料方式

闫扶摇 朱磊 陈宏涛 杨莹 李昱炀 轩欢欢 张军 蔡佑刚 段丕荣 李国 周茂华 罗定祥 张雁祥 闫牧夫

闫扶摇, 朱磊, 陈宏涛, 杨莹, 李昱炀, 轩欢欢, 张军, 蔡佑刚, 段丕荣, 李国, 周茂华, 罗定祥, 张雁祥, 闫牧夫. 轧/锻态高品质特殊钢退火软化工艺与布料方式[J]. 钢铁钒钛, 2021, 42(2): 152-160. doi: 10.7513/j.issn.1004-7638.2021.02.025
引用本文: 闫扶摇, 朱磊, 陈宏涛, 杨莹, 李昱炀, 轩欢欢, 张军, 蔡佑刚, 段丕荣, 李国, 周茂华, 罗定祥, 张雁祥, 闫牧夫. 轧/锻态高品质特殊钢退火软化工艺与布料方式[J]. 钢铁钒钛, 2021, 42(2): 152-160. doi: 10.7513/j.issn.1004-7638.2021.02.025
Yan Fuyao, Zhu Lei, Chen Hongtao, Yang Ying, Li Yuyang, Xuan Huanhuan, Zhang Jun, Cai Yougang, Duan Pirong, Li Guo, Zhou Maohua, Luo Dingxiang, Zhang Yanxiang, Yan Mufu. Annealing process and stacking method for reducing hardness of as rolled/forged high quality special steel[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(2): 152-160. doi: 10.7513/j.issn.1004-7638.2021.02.025
Citation: Yan Fuyao, Zhu Lei, Chen Hongtao, Yang Ying, Li Yuyang, Xuan Huanhuan, Zhang Jun, Cai Yougang, Duan Pirong, Li Guo, Zhou Maohua, Luo Dingxiang, Zhang Yanxiang, Yan Mufu. Annealing process and stacking method for reducing hardness of as rolled/forged high quality special steel[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(2): 152-160. doi: 10.7513/j.issn.1004-7638.2021.02.025

轧/锻态高品质特殊钢退火软化工艺与布料方式

doi: 10.7513/j.issn.1004-7638.2021.02.025
详细信息
    作者简介:

    闫扶摇(1990—),女,博士,通讯作者,主要研究方向:合金设计、热处理与表层改性理论和应用,E-mail:yfy_829@hotmail.com

  • 中图分类号: TF76,TG161

Annealing process and stacking method for reducing hardness of as rolled/forged high quality special steel

  • 摘要: 针对高品质特殊钢(如CTHQ25、1Cr11Ni2W2MoV、30CrNi4Mo等)现有轧/锻棒料工艺退火后硬度(HB)超标(>270)、同炉硬度不均匀(270~290),退火周期长(不同直径棒料退火40~60 h不等)等难题,开展短周期退火软化工艺及设备工装设计应用研究。以轧/锻态CTHQ25钎具钢为例,基于热力学计算和试验研究,揭示了退火软化机理,设计出一步退火工艺、两步退火工艺,阐明了原始组织、退火温度、退火时间对退火组织和硬度的影响规律。结果表明,采用“低温-高温”两步退火工艺后硬度(HB)由原工艺的276降至240。同时,基于温度场-流场耦合模拟计算,设计工装垫块,将原堆垛式布料优化为平铺式布料,提高了炉温均匀性,保证了同炉产品硬度的均一性(241±4),退火工艺周期缩短20%以上。
  • 图  1  轧态CTHQ25钢的微观组织结构表征

    Figure  1.  The microstructure characterization of as-rolled CTHQ25 steel

    图  2  热轧态CTHQ25钢OM照片

    Figure  2.  The OM microstructure of as hot rolled CTHQ25 steel

    图  3  轧态CTHQ25钢EPMA背散射图像

    Figure  3.  EPMA Backscatter image of as-rolled CTHQ25 steel

    图  4  CTHQ25钢平衡相含量与温度关系

    Figure  4.  Equilibrium phase diagram of CTHQ25 steel

    图  5  轧态CTHQ25钢不同温度奥氏体化后不同冷却方式下的微观组织和硬度

    Figure  5.  Microstructure and hardness of as-rolled CTHQ25 steel after different austenitizing processes

    图  6  奥氏体化+一步退火工艺

    Figure  6.  Schematic diagram of austenitizing and single-step annealing process

    图  7  不同初始组织分别在680 ℃和700 ℃退火48 h的硬度

    Figure  7.  Hardness of different initial microstructures annealed at 680 ℃ and 700℃ for 48 h

    (a) 680 ℃;(b) 700 ℃

    图  8  轧态CTHQ25钢680 ℃/1 h/AC + 680 ℃/48 h一步退火的微观组织

    Figure  8.  Microstructure of as-rolled CTHQ25 steel austenitized at 680 ℃ for 1 h with air cooling and then single-step annealed at 680 ℃ for 48 h

    图  9  奥氏体化+两步退火工艺

    Figure  9.  Schematic diagram of austenitizing and double-step annealing

    图  10  轧态CTHQ25钢经680 ℃/1 h/AC + 500 ℃/1~7 h/ AC处理后的显微组织

    Figure  10.  Microstructure of as-rolled CTHQ25 steel treated under 680 ℃/1 h/AC and 500 ℃/1~7 h/ AC conditions

    图  11  轧态CTHQ25钢经680 ℃/1 h/AC + 500 ℃/5 h-680 ℃/24~30 h/AC处理后的微观组织

    Figure  11.  Microstructure of as-rolled CTHQ25 steel treated under 680 ℃/1 h/AC and 500 ℃/5 h-680 ℃/24~30 h/AC conditions

    图  12  相同退火时间、不同退火温度试样的硬度

    Figure  12.  Hardness of sample annealed for same annealing time and at different annealing temperatures

    图  13  台车式燃料炉布料及优化设计

    Figure  13.  Car-type fuel furnace and optimal design of steel configuration

    图  14  炉体及棒料温度场及特征点升温曲线(插图为沿炉门方向截面温度场分布)

    Figure  14.  Temperature field of furnace with steel bar and heating curve of characteristic points (the illustration shows cross section’s the temperature field distribution from furnace door direction)

    图  15  平铺式布料用垫块

    Figure  15.  Block for flat configuration of steel bar

    表  1  CTHQ25钢主要化学成分

    Table  1.   Main chemical compositions of CTHQ25 steel %

    CSiMnCrNiMoVCuPS
    0.23~0.261.30~1.501.30~1.500.35~0.551.75~2.000.50~0.650.15~0.25≤0.20≤0.010≤0.008
    下载: 导出CSV

    表  2  轧态CTHQ25钢偏析带和基体的合金元素含量

    Table  2.   Alloying element content in segregation area and matrix in rolled CTHQ25 steel %

    合金元素MnCrMoSiVNi
    带状偏析1.9920.6040.9771.7990.2632.228
    基体1.4260.4620.5051.3270.1851.772
    偏析系数1.3971.3071.9361.3561.4261.257
    下载: 导出CSV

    表  3  500 ℃/5 h-680 ℃/30 h退火试样带状组织和基体的合金元素含量

    Table  3.   Alloy element contents of the sample annealed at 500 ℃/5 h-680 ℃/30 h in segregation and matrix %

    MnCrMoSiVNi
    带状区域1.5630.6230.5071.5700.2431.970
    基体1.450.590.4831.4230.2701.863
    M/M1.0781.0561.0481.1030.9011.057
    下载: 导出CSV
  • [1] Dong Xinye, Hu Ming. Brazing steel and brazing tools at home and abroad[J]. Rock Drilling Machinery & Pneumatic Tools, 2007,(1):1−5. (董鑫业, 胡铭. 国内外钎钢与钎具[J]. 凿岩机械气动工具, 2007,(1):1−5.
    [2] Cheng Juqiang, Liu Zhixue, Wang Yuanhui. Influence of heat treatment on microstructure and mechanical properties of new bainite drill steel[J]. Heat Treatment of Metals, 2008,(5):77−79. (程巨强, 刘志学, 王元辉. 热处理工艺对新型贝氏体钎具钢组织和力学性能的影响[J]. 金属热处理, 2008,(5):77−79.
    [3] Yan T, Yu E, Zhao Y. Constitutive modeling for flow stress of 55SiMnMo bainite steel at hot working conditions[J]. Materials & Design, 2013,50:574−580.
    [4] Sun M Y, Wang X L, Wang Z Q, et al. The critical impact of intercritical deformation on variant pairing of bainite/martensite in dual-phase steels[J]. Materials Science and Engineering A, 2019,771:138668.
    [5] Huda N, Midawi A R H, Gianetto J, et al. Influence of martensite-austenite (MA) on impact toughness of X80 line pipe steels[J]. Materials Science and Engineering, 2016,662(26):481−491.
    [6] LePera F S. Improved etching technique to emphasize martensite and bainite in high-strength dual-phase steel[J]. JOM, 1980,32:38−39.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  273
  • HTML全文浏览量:  21
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-14
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回