留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

22MnCrNiMo钢疲劳腐蚀性能研究

戴益波 高平 郭宇航

戴益波, 高平, 郭宇航. 22MnCrNiMo钢疲劳腐蚀性能研究[J]. 钢铁钒钛, 2021, 42(2): 172-178. doi: 10.7513/j.issn.1004-7638.2021.02.028
引用本文: 戴益波, 高平, 郭宇航. 22MnCrNiMo钢疲劳腐蚀性能研究[J]. 钢铁钒钛, 2021, 42(2): 172-178. doi: 10.7513/j.issn.1004-7638.2021.02.028
Dai Yibo, Gao Ping, Guo Yuhang. Research on fatigue corrosion behavior of 22MnCrNiMo steel[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(2): 172-178. doi: 10.7513/j.issn.1004-7638.2021.02.028
Citation: Dai Yibo, Gao Ping, Guo Yuhang. Research on fatigue corrosion behavior of 22MnCrNiMo steel[J]. IRON STEEL VANADIUM TITANIUM, 2021, 42(2): 172-178. doi: 10.7513/j.issn.1004-7638.2021.02.028

22MnCrNiMo钢疲劳腐蚀性能研究

doi: 10.7513/j.issn.1004-7638.2021.02.028
详细信息
    作者简介:

    戴益波(1995—),男,江苏盐城人,硕士,通讯作者,主要研究方向为金属腐蚀与防护。E-mail:justybdai@163.com

  • 中图分类号: TF762, TG172

Research on fatigue corrosion behavior of 22MnCrNiMo steel

  • 摘要: 采用海水挂片试验和腐蚀疲劳试验对R4s (22MnCrNiMo)级钢的耐腐蚀机理和腐蚀疲劳性能进行了研究,腐蚀时间选择为30、60 、90 d。结果表明:腐蚀初期,22MnCrNiMo钢的腐蚀机理为点蚀的局部腐蚀,随着时间的增加转变为点蚀的均匀腐蚀。当腐蚀时间到90 d时,试样表面已完全被花状腐蚀产物覆盖,整个腐蚀过程中,22MnCrNiMo钢的腐蚀速率在0.035~0.045 g/(m2·h)。22MnCrNiMo钢腐蚀疲劳的幂函数表达式为:S=14 000.12×N −0.266 4,其疲劳极限约为190 MPa。在电化学效应和交变应力以及侵蚀性离子的作用下,试样的裂纹扩展速度增加,断裂时间提前。
  • 图  1  腐蚀疲劳标准试样

    Figure  1.  Corrosion fatigue standard sample

    图  2  海水挂片腐蚀速率

    Figure  2.  Corrosion rate of seawater coupon.

    图  3  海水挂片经30 d腐蚀表面形貌SEM形貌及放大图

    Figure  3.  SEM of corrosion surface morphology of seawater coupon after 30 days.

    图  4  海水挂片经60 d腐蚀表面形貌SEM形貌及放大图

    Figure  4.  SEM of corrosion surface morphology of seawater coupon after 60 days.

    图  5  海水挂片经90 d腐蚀表面形貌SEM形貌

    Figure  5.  SEM of corrosion surface morphology of seawater coupon after 60 days.

    图  6  22MnCrNiMo钢腐蚀疲劳S-N曲线

    Figure  6.  22MnCrNiMo steel corrosion fatigue S-N curve

    图  7  幂函数公式下22MnCrNiMo S-N曲线

    Figure  7.  S-N curve of 22MnCrNiMo steel

    图  8  试样腐蚀疲劳断裂断口SEM形貌

    Figure  8.  SEM of corrosion fatigue macro-fracture (a) and cracks initiation phase fracture (b)

    图  9  试样腐蚀疲劳裂纹扩展阶段和瞬断区SEM形貌

    Figure  9.  SEM of the first (a) and second (b) stage and blink-off zone (c) of the corrosion fatigue crack growth stage

    图  10  试样腐蚀疲劳断口EDS分析

    Figure  10.  EDS analysis results of corrosion fatigue fracture

    表  1  22MnCrNiMo钢的化学成分

    Table  1.   Chemical compositions of the steel 22MnCrNiMo %

    CSiMnPSCrNi
    0.24~0.300.15~0.301.20~1.60≤0.025≤0.0250.80~1.300.70~1.30
    Cu Al Mo Nb [O] [N] [H]
    ≤0.20 0.020~0.050 0.40~0.80 0.02~0.06 ≤25 ×10−4 ≤90 ×10−4 ≤2 ×10−4
    下载: 导出CSV

    表  2  人工海水成分配比

    Table  2.   Chemical compositions of artificial seawater

    名称化学式分子量用量/( g·L−1)
    无水硫酸钠Na2SO4142.044.00
    氯化钠NaCl58.4425.00
    氯化镁MgCl2·6H2O203.3011.00
    氯化钙CaCl2111.001.20
    下载: 导出CSV
  • [1] Zarandi E P, Skallerud B H. Cyclic behavior and strain energy-based fatigue damage analysis of mooring chains high strength steel[J]. Marine Structures, 2020,70:102703. doi: 10.1016/j.marstruc.2019.102703
    [2] Dong Fang, Yan Ruijun, Yang Zongjia, et al. Effect of rare earth Ce on corrosion resistance properties of steel 22MnCrNiMo[J]. China Metallurgy, 2019,29(1):30−37. (董方, 闫瑞军, 杨宗佳, 等. 稀土铈对22MnCrNiMo钢耐腐蚀性能的影响[J]. 中国冶金, 2019,29(1):30−37.
    [3] Shen Yan, Liu Guixiang, Wang Hongxing. Preparation of composite coatings on 22MnCrNiMo steel for mooring rope[J]. Surface Technology, 2017,46(10):50−59. (沈雁, 刘桂香, 王红星. 系泊缆用22MnCrNiMo钢表面纳米复合镀层的制备[J]. 表面技术, 2017,46(10):50−59.
    [4] Fang Guangjin. Determination and analysis of CCT curves of R4(22MnCrNiMo) steel for mooring chain[J]. Heat Treatment of Metals, 2020,45(3):208−211. (方光锦. 系泊链用R4(22MnCrNiMo)钢CCT曲线测定及分析[J]. 金属热处理, 2020,45(3):208−211.
    [5] An Liqiao, Liu Yubao, Liu Deyi, et al. Effect of practical decarburized depth on fatigue property of 60Si2CrVAT spring steel[J]. Journal of Dalian Jiaotong University, 2009,30(3):52−55. (安丽乔, 刘玉宝, 刘德义, 等. 脱碳深度对60Si2CrVAT弹簧钢疲劳性能的影响[J]. 大连交通大学学报, 2009,30(3):52−55. doi: 10.3969/j.issn.1673-9590.2009.03.013
    [6] Yan Ruijun, Dong Fang, Ma Zheng, et al. Effect of rare earth Ce on structure and mechanical properties of steel 22MnCrNiMo[J]. Journal of Inner Mongolia University of Science and Technology, 2017,36(04):333−337. (闫瑞军, 董方, 马征,等. 稀土Ce对22MnCrNiMo钢组织和力学性能的影响[J]. 内蒙古科技大学学报, 2017,36(04):333−337.
    [7] Buzzatti D T, Chludzinki M, dos Santos R E, et al. Toughness properties of a friction hydro pillar processed offshore mooring chain steel[J]. Journal of Materials Research and Technology, 2019,8(3):2625−2637. doi: 10.1016/j.jmrt.2019.04.002
    [8] Zhang X, Hoogeland M. Influence of deformation on corrosion of mooring chain steel in seawater[J]. Materials and Corrosion, 2019,70(6):962−972. doi: 10.1002/maco.201810766
    [9] (冯国庆. 船舶结构疲劳强度评估方法研究[D].哈尔滨: 哈尔滨工程大学, 2006.)

    Feng Guoqing. Research on fatigue strength assessment method of ship struetures[D]. Harbin: Harbin Engineering University, 2006.
    [10] Nakano T, Sakakibara T, Wakita M, et al. Development of high-strength suspension coil springs with improved corrosion fatigue strength[J]. Transactions of Japan Society for Spring Research, 2001,(46):7−12.
    [11] Kurihara Y, Takasaki S, Kobayashi M, et al. Corrosion fatigue behavior of automobile suspension spring steels[J]. Mitsubishi Steel Manuf. Tech. Rev., 1993,27(1):9−15.
    [12] Masataka Shimotsusa, Nobuhiko Ibarakl, Tatsuo Ikeda and Takenori Nakayma. Wire rod for suspension spring with excellent corrosion fatigue life[J]. Wire Journal International, 1998:78−83.
    [13] Gan Yang, Li Ying, Lin Haichao. Experimental studies on the pitting corrosion of low alloy steels in 3.5% NaCl[J]. Journal of Chinese Society for Corrosion and Protection, 2001,21(2):82−87. (甘阳, 李瑛, 林海潮. 海水中低合金钢局部腐蚀过程的试验室模拟[J]. 中国腐蚀与防护学报, 2001,21(2):82−87.
    [14] (吴荫顺. 金属腐蚀研究方法[M]. 北京: 冶金工业出版社, 1993: 24−28, 68−73.)

    Wu Yinshun. Metal corrosion research methods[M]. Beijing: Metallurgical Industry Press, 1993: 24−28, 68−73.
    [15] Shao Yunliang, Li Jian. Zhang Weixin, et al. Study on mooring chain fatigue performance in seawater[J]. The Ocean Engineering, 2019,37(5):127−132. (邵云亮, 李剑, 张卫新, 等. 系泊链海水疲劳性能初步研究[J]. 海洋工程, 2019,37(5):127−132.
    [16] (王荣. 金属材料的腐蚀疲劳[M]. 西安: 西北工业大学出版社, 2001.)

    Wang Rong. Corrosion fatigue of metal materials[M]. Xi, an: Northwestern Polytechnical University Press,2001.
    [17] (曾春华, 邹十践编译. 疲劳分析方法及应用[M]. 北京: 国防工业出版社, 1991.)

    Zeng Chunhua, Zou Shijian Compile. Fatigue analysis methods and applications[M]. Beijing: National Defense Industry Press. 1991.
    [18] (王放. 金属基复合材料循环响应和疲劳破坏的理论和模拟[D]. 上海: 上海大学, 2007.)

    Wang Fang. Modelling and simulation of cyclic response and fatigue failure of fiber reinforced ductile composite[D]. Shanghai: Shanghai University, 2007.
    [19] (Suresh S, 王中光. 材料的疲劳[M]. 北京: 国防工业出版社, 1993.)

    Suresh S, Wang Zhongguang. Material fatigue[M]. Beijing: National Defense Industry Press, 1993.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  32
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-08
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回