Research on fatigue corrosion behavior of 22MnCrNiMo steel
-
摘要: 采用海水挂片试验和腐蚀疲劳试验对R4s (22MnCrNiMo)级钢的耐腐蚀机理和腐蚀疲劳性能进行了研究,腐蚀时间选择为30、60 、90 d。结果表明:腐蚀初期,22MnCrNiMo钢的腐蚀机理为点蚀的局部腐蚀,随着时间的增加转变为点蚀的均匀腐蚀。当腐蚀时间到90 d时,试样表面已完全被花状腐蚀产物覆盖,整个腐蚀过程中,22MnCrNiMo钢的腐蚀速率在0.035~0.045 g/(m2·h)。22MnCrNiMo钢腐蚀疲劳的幂函数表达式为:S=14 000.12×N −0.266 4,其疲劳极限约为190 MPa。在电化学效应和交变应力以及侵蚀性离子的作用下,试样的裂纹扩展速度增加,断裂时间提前。
-
关键词:
- 22MnCrNiMo钢 /
- 点蚀 /
- 耐蚀性 /
- 腐蚀疲劳
Abstract: In this paper, the corrosion resistance mechanism and corrosion fatigue performance of R4s (22MnCrNiMo) grade steel were studied by means of seawater coupon test and corrosion fatigue test. The choice of corrosion time was 30 d, 60 d and 90 d, respectively. The experimental results show that in the initial stage of corrosion, the corrosion mechanism of 22MnCrNiMo steel is localized corrosion of pitting corrosion, which changes into uniform corrosion of pitting corrosion as time extends. When the corrosion time reaches to 90 d, the surface of the sample is completely covered with flower-like corrosion products. During the entire corrosion process, the corrosion rate of 22MnCrNiMo steel is between 0.035~0.045 g/(m2·h). The power function expression of corrosion fatigue of 22MnCrNiMo steel is: S=14 000.12×N −0.266 4, and its fatigue limit is about 190 MPa. Subject to electrochemical effect, alternating stress and aggressive ions effects, the crack propagation speed of the sample increases, and the fracture occurs in advance.-
Key words:
- 22MnCrNiMo steel /
- pitting /
- corrosion resistance /
- corrosion fatigue
-
表 1 22MnCrNiMo钢的化学成分
Table 1. Chemical compositions of the steel 22MnCrNiMo
% C Si Mn P S Cr Ni 0.24~0.30 0.15~0.30 1.20~1.60 ≤0.025 ≤0.025 0.80~1.30 0.70~1.30 Cu Al Mo Nb [O] [N] [H] ≤0.20 0.020~0.050 0.40~0.80 0.02~0.06 ≤25 ×10−4 ≤90 ×10−4 ≤2 ×10−4 表 2 人工海水成分配比
Table 2. Chemical compositions of artificial seawater
名称 化学式 分子量 用量/( g·L−1) 无水硫酸钠 Na2SO4 142.04 4.00 氯化钠 NaCl 58.44 25.00 氯化镁 MgCl2·6H2O 203.30 11.00 氯化钙 CaCl2 111.00 1.20 -
[1] Zarandi E P, Skallerud B H. Cyclic behavior and strain energy-based fatigue damage analysis of mooring chains high strength steel[J]. Marine Structures, 2020,70:102703. doi: 10.1016/j.marstruc.2019.102703 [2] Dong Fang, Yan Ruijun, Yang Zongjia, et al. Effect of rare earth Ce on corrosion resistance properties of steel 22MnCrNiMo[J]. China Metallurgy, 2019,29(1):30−37. (董方, 闫瑞军, 杨宗佳, 等. 稀土铈对22MnCrNiMo钢耐腐蚀性能的影响[J]. 中国冶金, 2019,29(1):30−37. [3] Shen Yan, Liu Guixiang, Wang Hongxing. Preparation of composite coatings on 22MnCrNiMo steel for mooring rope[J]. Surface Technology, 2017,46(10):50−59. (沈雁, 刘桂香, 王红星. 系泊缆用22MnCrNiMo钢表面纳米复合镀层的制备[J]. 表面技术, 2017,46(10):50−59. [4] Fang Guangjin. Determination and analysis of CCT curves of R4(22MnCrNiMo) steel for mooring chain[J]. Heat Treatment of Metals, 2020,45(3):208−211. (方光锦. 系泊链用R4(22MnCrNiMo)钢CCT曲线测定及分析[J]. 金属热处理, 2020,45(3):208−211. [5] An Liqiao, Liu Yubao, Liu Deyi, et al. Effect of practical decarburized depth on fatigue property of 60Si2CrVAT spring steel[J]. Journal of Dalian Jiaotong University, 2009,30(3):52−55. (安丽乔, 刘玉宝, 刘德义, 等. 脱碳深度对60Si2CrVAT弹簧钢疲劳性能的影响[J]. 大连交通大学学报, 2009,30(3):52−55. doi: 10.3969/j.issn.1673-9590.2009.03.013 [6] Yan Ruijun, Dong Fang, Ma Zheng, et al. Effect of rare earth Ce on structure and mechanical properties of steel 22MnCrNiMo[J]. Journal of Inner Mongolia University of Science and Technology, 2017,36(04):333−337. (闫瑞军, 董方, 马征,等. 稀土Ce对22MnCrNiMo钢组织和力学性能的影响[J]. 内蒙古科技大学学报, 2017,36(04):333−337. [7] Buzzatti D T, Chludzinki M, dos Santos R E, et al. Toughness properties of a friction hydro pillar processed offshore mooring chain steel[J]. Journal of Materials Research and Technology, 2019,8(3):2625−2637. doi: 10.1016/j.jmrt.2019.04.002 [8] Zhang X, Hoogeland M. Influence of deformation on corrosion of mooring chain steel in seawater[J]. Materials and Corrosion, 2019,70(6):962−972. doi: 10.1002/maco.201810766 [9] (冯国庆. 船舶结构疲劳强度评估方法研究[D].哈尔滨: 哈尔滨工程大学, 2006.)Feng Guoqing. Research on fatigue strength assessment method of ship struetures[D]. Harbin: Harbin Engineering University, 2006. [10] Nakano T, Sakakibara T, Wakita M, et al. Development of high-strength suspension coil springs with improved corrosion fatigue strength[J]. Transactions of Japan Society for Spring Research, 2001,(46):7−12. [11] Kurihara Y, Takasaki S, Kobayashi M, et al. Corrosion fatigue behavior of automobile suspension spring steels[J]. Mitsubishi Steel Manuf. Tech. Rev., 1993,27(1):9−15. [12] Masataka Shimotsusa, Nobuhiko Ibarakl, Tatsuo Ikeda and Takenori Nakayma. Wire rod for suspension spring with excellent corrosion fatigue life[J]. Wire Journal International, 1998:78−83. [13] Gan Yang, Li Ying, Lin Haichao. Experimental studies on the pitting corrosion of low alloy steels in 3.5% NaCl[J]. Journal of Chinese Society for Corrosion and Protection, 2001,21(2):82−87. (甘阳, 李瑛, 林海潮. 海水中低合金钢局部腐蚀过程的试验室模拟[J]. 中国腐蚀与防护学报, 2001,21(2):82−87. [14] (吴荫顺. 金属腐蚀研究方法[M]. 北京: 冶金工业出版社, 1993: 24−28, 68−73.)Wu Yinshun. Metal corrosion research methods[M]. Beijing: Metallurgical Industry Press, 1993: 24−28, 68−73. [15] Shao Yunliang, Li Jian. Zhang Weixin, et al. Study on mooring chain fatigue performance in seawater[J]. The Ocean Engineering, 2019,37(5):127−132. (邵云亮, 李剑, 张卫新, 等. 系泊链海水疲劳性能初步研究[J]. 海洋工程, 2019,37(5):127−132. [16] (王荣. 金属材料的腐蚀疲劳[M]. 西安: 西北工业大学出版社, 2001.)Wang Rong. Corrosion fatigue of metal materials[M]. Xi, an: Northwestern Polytechnical University Press,2001. [17] (曾春华, 邹十践编译. 疲劳分析方法及应用[M]. 北京: 国防工业出版社, 1991.)Zeng Chunhua, Zou Shijian Compile. Fatigue analysis methods and applications[M]. Beijing: National Defense Industry Press. 1991. [18] (王放. 金属基复合材料循环响应和疲劳破坏的理论和模拟[D]. 上海: 上海大学, 2007.)Wang Fang. Modelling and simulation of cyclic response and fatigue failure of fiber reinforced ductile composite[D]. Shanghai: Shanghai University, 2007. [19] (Suresh S, 王中光. 材料的疲劳[M]. 北京: 国防工业出版社, 1993.)Suresh S, Wang Zhongguang. Material fatigue[M]. Beijing: National Defense Industry Press, 1993.