Influence of basicity on mineralogical microstructure and metallurgical property of sinter in shijiazhuang iron & steel
-
摘要: 采用偏光显微镜研究了石钢不同碱度烧结矿的矿物组成及显微结构特征,烧结矿矿相结构与冶金性能之间的关系。研究发现:随着碱度的升高,烧结矿矿物组成简单化,粘结相含量升高,其中铁酸钙含量增加明显;显微结构均匀化,由斑状-粒状结构过渡为交织熔蚀结构,气孔率升高,出现骸晶状及菱形定向排列的赤铁矿,铁酸钙由他形晶形态过渡为针状形态。相应的烧结矿强度、还原性能及低温还原粉化性能有所改善。Abstract: The mineralogical compositions and microstructure of sinter with different basicity had been investigated by means of polarization microscope, and the relationship between the mineralogical microstructure and the metallurgical property of sinter had been analyzed. The result shows that when the basicity of the sinter varies from 1.8 to 2.4, the mineral composition of sinter is simple, and the content of the binder phase increases. With the basicity of sinter increased, the microstructure of the sinter is uniform gradually and changes from porphyric-granular texture to erosion interleaving texture, the content of the pore is elevated, the skeleton crystals hematite appear, the form of calcium ferrite is anhedron to neddle-shaped. Consequently the metallurgical property of the sinter is improved.
-
Key words:
- sinter /
- basicity /
- mineral composition /
- microstructure /
- metallurgical
-
表 1 原料化学成分
Table 1. Chemical compositions of raw materials
% 原料 TFe FeO SiO2 CaO MgO Al2O3 S P 烧损 精矿1 64.23 27.95 4.6 0.82 1.11 0.81 0.306 0.016 1.14 精矿2 62.42 25.2 4.77 0.9 4.28 0.48 0.305 0.001 25.2 麦克矿 61.74 1.2 3.05 0.02 0.14 1.74 0.047 0.055 6.2 杨迪矿 57.87 0.5 4.96 0.05 0.13 1.35 0.027 0.035 10.06 澳矿 62.3 0.45 5.01 0.25 4.4 1.92 0.037 0.068 3.02 巴西矿 65.85 0.5 2.37 0.02 0.14 0.98 0.02 0.026 1.87 白灰 6.22 71.9 1.55 12.2 高镁粉 7.51 1.85 80.9 7.05 煤粉灰分 35.5 5.71 0.42 20.5 表 2 烧结矿配矿方案
Table 2. Mixture of sinter
kg 样号 精矿1 精矿2 麦克矿 杨迪矿 澳矿 巴西矿 白灰 高镁粉 煤粉灰分 返矿 R1.8 4.62 1.00 1.01 6.56 2.02 5.02 2.65 0.32 1.25 5.55 R2.1 4.51 0.98 0.99 6.40 1.97 4.90 3.14 0.32 1.25 5.56 R2.4 4.40 0.95 0.97 6.24 1.92 4.78 3.64 0.31 1.25 5.56 表 3 烧结矿矿物组成及体积百分含量
Table 3. Mineral compositions and their volume fraction of sinter
% 样号 金 属 相 粘 结 相 磁铁矿 赤铁矿 富氏体 铁酸钙 硅酸二钙 钙镁橄榄石 钙铁橄榄石 玻璃质 黄长石 硅灰石 R1.8 40~45 25~30 1~2 10~12 12~15 2~3 少量 3~5 少量 少量 R2.4 25~30 30~35 25~30 10~12 少量 1~2 表 4 烧结矿中主要矿物的抗压强度及还原度[7]
Table 4. Compressive strength and reducibility of main minerals in sinter
矿物名称 瞬时抗压强度/(kg·mm−2) 还原度/% 赤铁矿 26.7 49.9 磁铁矿 36.9 26.7 玻璃质 4.6 3.1 铁酸一钙 37.0 40.1 铁酸二钙 14.2 28.5 -
[1] Zuo Jingyu, Bai Xiongfei. Discussion about increasing content of MgO in sinter[J]. Hebei Metallurgy, 2013,(5):1−3. (左静宇, 白熊飞. 石钢提高烧结矿中MgO含量探讨[J]. 河北冶金, 2013,(5):1−3. doi: 10.3969/j.issn.1006-5008.2013.05.001 [2] Li Jie, Wang Xingjuan, Liu Ran, et al. Study of the sintering property of malaysia mines powder at Shijiazhuang iron & steel works[J]. Journal of Hebei United University Natural Science Edition, 2011,33(1):27−31. (李杰, 王杏娟, 刘然, 等. 石钢马来西亚粉烧结性能[J]. 河北理工大学学报(自然科学版), 2011,33(1):27−31. [3] Li Jie, Lv Qing. Research about adding malaysia ore powder in ore proportioning of sintering in Shijiazhuang steel[J]. Hebei Metallurgy, 2011,(5):3−6. (李杰, 吕庆. 石钢烧结配加马来西亚粉烧结性能的研究[J]. 河北冶金, 2011,(5):3−6. doi: 10.3969/j.issn.1006-5008.2011.05.001 [4] Liu Lina, Han Xiuli, Liu Lei. Study on texture of sinter with different basicity[J]. Iron Steel Vanadium Titanium, 2017,38(2):112−115. (刘丽娜, 韩秀丽, 刘磊. 不同类型烧结矿随碱度变化的矿相结构研究[J]. 钢铁钒钛, 2017,38(2):112−115. doi: 10.7513/j.issn.1004-7638.2017.02.019 [5] Han Tao. Microstructure research and practice based of improving reducibility of sinter in Xuan steel[J]. Sintering and Pelletizing, 2018,43(6):49−53. (韩涛. 提升宣钢烧结矿还原性的微结构研究与实践[J]. 烧结球团, 2018,43(6):49−53. [6] Liu Ran, Wang Longhao, Yan Zhaozhao, et al. Present situation of research on impact of chemical composition on low temperature reduction degradation of sinter[J]. Sintering and Pelletizing, 2018,43(1):1−5. (刘然, 王龙浩, 严照照, 等. 化学成分对烧结矿低温还原粉化影响的研究现状[J]. 烧结球团, 2018,43(1):1−5. [7] (任允芙. 钢铁冶金岩相矿相学[M]. 北京: 冶金工业出版社, 1982: 179−202.)Ren Yunfu. Petrographic of steel metallurgy[M]. Beijing: Metallurgical Industry Press, 1982: 179−202. [8] (郭玉峰. MgO抑制烧结矿低温还原粉化的成矿机理研究[D]. 北京: 北京科技大学, 2017.)Guo Yufeng. Effect of MgO on mineralization mechanism of sinter for inhibiting the low-temperature reduction degradation[D]. Beijing: University of Science and Technology Beijing, 2017. [9] Guo Xingmin, Zhu Li. Mineralogical composition and microstructure of high basicity sinters[J]. Iron and Steel, 2007,42(1):17−19. (郭兴敏, 朱利. 高碱度烧结矿的矿物组成与矿相结构特征[J]. 钢铁, 2007,42(1):17−19. doi: 10.3321/j.issn:0449-749X.2007.01.004 [10] Li Jian, Mao Xiaoming, Peng Xin. Effect of micro-characteristics on reduction degradation index of sinter[J]. Iron and Steel, 2018,53(8):15−19. (李建, 毛晓明, 彭新. 微观性能对烧结矿低温还原粉化的影响[J]. 钢铁, 2018,53(8):15−19. [11] Pimenta H P, Seshadri V. Influence of Al2O3 and TiO2 on reduction degradation behavior of sinter and hematite at low temperatures[J]. Ironmaking and Steelmaking, 2002,29(3):175−179. doi: 10.1179/030192302225001992 [12] Panigrahy S C, Verstraeten P, Dilewijns J. Influence of MgO addition on mineralogy of iron ore sinter[J]. Metallurgical and Materials Transactions B, 1984,15B:23−32. [13] Shigaki I, Sawada M, Gennai N. Increase in low-temperature reduction degradation of iron ore sinter due to hematite-alumina solid solution and columnar calcium ferrite[J]. Transactions of the Iron and Steel Institute of Japan, 1986,26:503−511. doi: 10.2355/isijinternational1966.26.503 [14] Panigrahy S C, Verstraeten P, Dilewijns J. Effect of MgO addition on strength characteristics of iron ore sinter[J]. Ironmaking and Steelmaking, 1984,11:17−22. [15] Guo Yufeng, Guo Xingmin. Effect of MgO on low temperature reduction process of hematite fines sinter[J]. Journal of Iron and Steel Research, 2017,29(9):697−703. (郭玉峰, 郭兴敏. MgO对赤铁矿粉烧结产物低温还原过程的影响[J]. 钢铁研究学报, 2017,29(9):697−703.