留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四氯化钛除钒尾渣钠化焙烧动力学研究

堵伟桐 姜丛翔 郑睿琦 陈卓 居殿春

堵伟桐, 姜丛翔, 郑睿琦, 陈卓, 居殿春. 四氯化钛除钒尾渣钠化焙烧动力学研究[J]. 钢铁钒钛, 2022, 43(1): 7-12. doi: 10.7513/j.issn.1004-7638.2022.01.002
引用本文: 堵伟桐, 姜丛翔, 郑睿琦, 陈卓, 居殿春. 四氯化钛除钒尾渣钠化焙烧动力学研究[J]. 钢铁钒钛, 2022, 43(1): 7-12. doi: 10.7513/j.issn.1004-7638.2022.01.002
Du Weitong, Jiang Congxiang, Zheng Ruiqi, Chen Zhuo, Ju Dianchun. Study on sodium roasting kinetics of vanadium removal slag of titanium tetrachloride[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 7-12. doi: 10.7513/j.issn.1004-7638.2022.01.002
Citation: Du Weitong, Jiang Congxiang, Zheng Ruiqi, Chen Zhuo, Ju Dianchun. Study on sodium roasting kinetics of vanadium removal slag of titanium tetrachloride[J]. IRON STEEL VANADIUM TITANIUM, 2022, 43(1): 7-12. doi: 10.7513/j.issn.1004-7638.2022.01.002

四氯化钛除钒尾渣钠化焙烧动力学研究

doi: 10.7513/j.issn.1004-7638.2022.01.002
基金项目: 江苏省自然科学基金青年项目(BK20210888);江苏省高等学校自然科学研究面上项目(20KJB450001,20KJD450001)
详细信息
    作者简介:

    堵伟桐(1990—),男,河北沧州人, 博士, 讲师,主要从事含钒熔渣提钒研究, E-mail:weitong.du@just.edu.cn

    通讯作者:

    陈卓(1992—),女,河南开封人,博士,讲师,主要从事连铸保护渣及冶金固废利用等方面研究,E-mail:chenzhuo@just.edu.cn

  • 中图分类号: X757,TF841.3

Study on sodium roasting kinetics of vanadium removal slag of titanium tetrachloride

  • 摘要: 基于非等温热重分析研究Na2CO3添加量和升温速率对含钒尾渣氧化的影响规律,采用Kissinger-Akahira-Sunose(KAS)法计算了含钒尾渣氧化过程活化能和指前因子,并通过Coats-Redfem法推断机理函数并建立不同阶段所适用的动力学方程。结果表明:含钒尾渣完全氧化的温度为700 ℃,随Na2CO3添加量增加,表观活化能逐渐降低,氧化速率提高;当Na2CO3添加量超过20%后,钒渣在氧化焙烧过程中出现玻璃相,产生烧结现象,表观活化能开始逐渐增大,氧化速率降低。钠化焙烧过程分为四个阶段,其动力学方程分别为:第一阶段二维扩散dα/dT=exp(−72.03/RT)4(1−α)1/2[1−(1−α)1/2]20.022/β,第二阶段三维扩散dα/dT=exp(−23.7/RT)3/2(1−α)4/3[(1−α)−1/3−1]−10.014/β,第三阶段化学反应dα/dT=exp(−27.91/RT) (1−α)20.06/β,第四阶段形核与长大dα/dT=exp(−12.09/RT)2(1−α)[−ln(1−α)]1/20.14/β
  • 图  1  四氯化钛除钒尾渣XRD图谱

    Figure  1.  XRD pattern of vanadium removal slag of crude titanium tetrachloride

    图  2  不同升温速率下钒渣氧化的TG/DTG曲线

    Figure  2.  TG/DTG curves of oxidation of vanadium containing slag at different heating rates

    图  3  不同Na2CO3添加量下表观活化能与转换率的关系

    Figure  3.  The relationship between apparent activation energy and conversion rate with different addition amount of Na2CO3

    图  4  四氯化钛除钒尾渣钠化焙烧反应速率与转化率的关系

    Figure  4.  The relationship between the reaction rate and conversion rate of sodium calcination of the vanadium removal slag of titanium tetrachloride

    图  5  升温速率为10、15、20 K/min下ln(G(α)/T2)−1/T关系

    Figure  5.  Relationship of ln(G(α)/T2)−1/T at heating rate of 10 K/min, 15 K/min, and 20 K/min

    表  1  粗四氯化钛精制尾渣的主要化学成分

    Table  1.   Main chemical compositions of vanadium removal slag of crude titanium tetrachloride %

    ClFe2O3TiO2Al2O3V2O5ZrO2CSiO2Cr2O3
    31.9519.1815.398.6411.176.772.681.860.81
    下载: 导出CSV

    表  2  四氯化钛除钒尾渣添加20%Na2CO3钠化焙烧在不同阶段的表观活化能和指前因子

    Table  2.   Apparent activation energy and pre-exponential factor in different stages for sodium roasting of vanadium removal slag of titanium tetrachloride with 20% Na2CO3

    阶段不同升温速率时的活化能活化能/(kJ·mol−1)指前因子/min−1
    10 K/min15 K/min20 K/min
    活化能/(kJ·mol−1)拟合度活化能/(kJ·mol−1)拟合度活化能/(kJ·mol−1)拟合度
    第一阶段77.660.9971.980.9966.440.9972.030.022
    第二阶段24.810.9921.780.9924.510.9823.70.014
    第三阶段33.670.9826.040.9924.030.9927.910.06
    第四阶段13.430.9810.210.9912.640.9912.090.14
    下载: 导出CSV
  • [1] Qu Jinwei, Zhang Ting′an, Niu Liping, et al. Technical progress of comprehensive utilization of converter vanadium slag[J]. Iron Steel Vanadium Titanium, 2020,41(5):1−7. (瞿金为, 张廷安, 牛丽萍, 等. 转炉钒渣的综合利用技术进展[J]. 钢铁钒钛, 2020,41(5):1−7.
    [2] Xie Qichun. Research and application of reclaiming ilmenite from titanium tailings in Panxi[J]. Mining and Metallurgical Engineering, 2018,38(3):40−42. (谢琪春. 攀西选钛尾矿中再回收钛铁矿工艺研究与应用[J]. 矿冶工程, 2018,38(3):40−42. doi: 10.3969/j.issn.0253-6099.2018.03.009
    [3] Li Liang, Zhou Li, Li Dongqin, et al. Research on the recovery and utilization of TiCl4 refined tailings[J]. Iron Steel Vanadium Titanium, 2016,7(5):76−79. (李良, 周丽, 李冬勤, 等. TiCl4精制尾渣的回收利用研究[J]. 钢铁钒钛, 2016,7(5):76−79.
    [4] Zhou Li. Study on the vanadium removal process of the organic pretreatment of high vanadium content crude titanium tetrachloride[J]. Iron Steel Vanadium Titanium, 2017,38(4):24−28. (周丽. 高含钒粗四氯化钛有机物预处理除钒工艺研究[J]. 钢铁钒钛, 2017,38(4):24−28. doi: 10.7513/j.issn.1004-7638.2017.04.005
    [5] Yu Jing, Zhang Ping, Chen Tianxiang, et al. Research on the process of removing vanadium from crude titanium tetrachloride organics[J]. Journal of Guizhou University of Technology(Natural Science Edition), 2008,37(2):29−32. (于静, 章平, 陈天祥, 等. 粗四氯化钛有机物除钒工艺研究[J]. 贵州工业大学学报(自然科学版), 2008,37(2):29−32.
    [6] Shi Zhixin. Characterization of the variation law of vanadium spinel and fayalite during the sodium roasting of vanadium slag[J]. Non-ferrous Metals (Mineral Processing Part), 2018,(4):4−8,14. (史志新. 钒渣钠化焙烧过程中钒尖晶石和铁橄榄石的变化规律表征[J]. 有色金属(选矿部分), 2018,(4):4−8,14.
    [7] Zhang Xinxia. Optimization of sodium roasting process for high silicon high calcium vanadium slag[J]. Ferro Alloys, 2013,44(1):22−24,29. (张新霞. 高硅高钙钒渣钠化焙烧工艺的优化研究[J]. 铁合金, 2013,44(1):22−24,29. doi: 10.3969/j.issn.1001-1943.2013.01.006
    [8] Yang Z, Li H Y, Yin X C, et al. Leaching kinetics of calcification roasted vanadium slag with high CaO content by sulfuric acid[J]. International Journal of Mineral Processing, 2014,133:105−111. doi: 10.1016/j.minpro.2014.10.011
    [9] Pan Ziwei, Zheng Shili, Wang Zhongxing, et al. High-efficiency simultaneous extraction process of vanadium and chromium from high chromium vanadium slag by sub-molten salt method[J]. Iron Steel Vanadium Titanium, 2014,35(2):1−8. (潘自维, 郑诗礼, 王中行, 等. 亚熔盐法高铬钒渣钒铬高效同步提取工艺研究[J]. 钢铁钒钛, 2014,35(2):1−8. doi: 10.7513/j.issn.1004-7638.2014.02.001
    [10] Gao Jian, Liu Xibin, Shi Zhixin. Phase changes and vanadium element migration characteristics of vanadium slag during sodium oxidation roasting[J]. Mining and Metallurgy, 2019,28(3):105−110. (高健, 刘希斌, 史志新. 钒渣氧化钠化焙烧过程中物相变化及钒元素迁移特征[J]. 矿冶, 2019,28(3):105−110. doi: 10.3969/j.issn.1005-7854.2019.03.022
    [11] Li Xinsheng, Xie Bing, Wang Guang, en, et al. Oxidation process of low-grade vanadium slag in presence of Na2CO3[J]. Transactions of Nonferrous Metals Society of China, 2011,21(8):1860−1867. doi: 10.1016/S1003-6326(11)60942-4
    [12] Xie Zhaoming, Deng Rongrui, Liu Zuohua, et al. Evolutionary behavior of fractal growth of vanadium slag powder in sodium roasting converter[J]. Journal of Chemical Industry, 2019,70(5):1904−1912. (谢昭明, 邓容锐, 刘作华, 等. 钠化焙烧转炉钒渣粉体分形生长的演化行为[J]. 化工学报, 2019,70(5):1904−1912.
    [13] Wang Minghua, Zhao Hui, Liu Yan, et al. Semi-quantitative analysis of the sodiumization roasting process of vanadium slag[J]. Iron Steel Vanadium Titanium, 2017,38(5):31−36. (王明华, 赵辉, 刘岩, 等. 钒渣钠化焙烧过程的半定量分析[J]. 钢铁钒钛, 2017,38(5):31−36. doi: 10.7513/j.issn.1004-7638.2017.05.006
    [14] Lu X L, Zhu Q, Meng Y Z. Kinetic analysis of thermal decomposition of poly (propylene carbonate)[J]. Polymer Degradation and Stability, 2005,89(2):282−288. doi: 10.1016/j.polymdegradstab.2004.12.025
    [15] Flynn J H, Wall L A. A quick, direct method for the determination of activation energy from thermogravimetric data[J]. Journal of Polymer Science Part B:Polymer Letters, 1966,4(5):323−328. doi: 10.1002/pol.1966.110040504
    [16] Criado J M, Sánchez-Jiménez P E, Pérez-Maqueda L A. Critical study of the isoconversional methods of kinetic analysis[J]. Journal of Thermal Analysis & Calorimetry, 2008,92(1):199−203.
    [17] Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry, 1957,29(11):1702−1706. doi: 10.1021/ac60131a045
    [18] Vyazovkin S, Chrissafis K, Lorenzo M L D, et al. ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations[J]. Thermochimica ACTA, 2014,590:1−23. doi: 10.1016/j.tca.2014.05.036
    [19] Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data. II[J]. Nature, 1964,201:68−69. doi: 10.1038/201068a0
    [20] Huang L, Chen Y C, Liu G, et al. Non-isothermal pyrolysis characteristics of giant reed using thermogravimetric analysis[J]. Energy, 2015,87:31−40. doi: 10.1016/j.energy.2015.04.089
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  36
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-27
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回