中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔盐法制备球形碳化钛纳米粉体的研究

李文靓 郭赟 杨亚东 刘波 辛亚男

李文靓, 郭赟, 杨亚东, 刘波, 辛亚男. 熔盐法制备球形碳化钛纳米粉体的研究[J]. 钢铁钒钛, 2023, 44(4): 10-17. doi: 10.7513/j.issn.1004-7638.2023.04.002
引用本文: 李文靓, 郭赟, 杨亚东, 刘波, 辛亚男. 熔盐法制备球形碳化钛纳米粉体的研究[J]. 钢铁钒钛, 2023, 44(4): 10-17. doi: 10.7513/j.issn.1004-7638.2023.04.002
Li Wenjing, Guo Yun, Yang Yadong, Liu Bo, Xin Yanan. Study on the preparation of spherical TiC nanopowder by molten salt method[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 10-17. doi: 10.7513/j.issn.1004-7638.2023.04.002
Citation: Li Wenjing, Guo Yun, Yang Yadong, Liu Bo, Xin Yanan. Study on the preparation of spherical TiC nanopowder by molten salt method[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 10-17. doi: 10.7513/j.issn.1004-7638.2023.04.002

熔盐法制备球形碳化钛纳米粉体的研究

doi: 10.7513/j.issn.1004-7638.2023.04.002
详细信息
    作者简介:

    李文靓,1993年出生,女,四川成都人,博士,通讯作者,研究方向为先进功能材料开发及应用,E-mail:wenjingli0610@126.com

  • 中图分类号: TF823

Study on the preparation of spherical TiC nanopowder by molten salt method

  • 摘要: 结合国家十四五战略部署,基于企业资源背景及下游市场需求,提出通过熔盐法短流程制备球形碳化钛纳米粉体,整个流程温度远低于传统工艺温度(1300 ℃),过程不使用易燃易爆还原剂,安全系数高,生产产品质量高、产量可控、生产周期较短且环保,具有一定工业推广性。研究了钛源碳源的选择及配比、熔盐比例,以及纳米颗粒的煅烧温度、保温时长对颗粒形貌和质量的影响。通过XRD和SEM对颗粒的物相组成、显微形貌进行了表征。结果表明,在NaCl-KCl混合盐摩尔比为1∶1的情况下,反应物以Ti/C摩尔比为1∶1配比,700 ℃保温2 h时开始有TiC生成,随温度升高,产物中目标产物的纯度逐步提高,900 ℃保温2 h可得到纯净的目标产物,无其余副产物生成,形貌为球形,粒径为80 nm左右。改变保温时长为5 h时,850 ℃即可得到纯净的目标产物,但粒径会适度增加到100 nm。从降低原料成本考虑,钛源比例为Ti∶TiO2=9∶1时,900 ℃即可得到无杂质的碳化钛纳米颗粒,形貌均为球形颗粒,颗粒粒径为50~65 nm。
  • 图  1  不同温度保温2 h后产物TiC及购买样品的XRD谱

    Figure  1.  XRD spectra of TiC product and purchased samples at different temperatures for 2 h

    图  2  购买成品TiC的SEM形貌

    Figure  2.  SEM images of purchased TiC

    图  3  不同温度保温2 h后产物TiC的SEM形貌

    Figure  3.  SEM images of TiC product at different temperatures for 2 h

    图  4  在850 ℃下不同保温时长的TiC产物XRD谱

    Figure  4.  XRD spectra of TiC products with different calcination time at 850 ℃

    图  5  在850 ℃下不同保温时长的TiC产物SEM形貌

    Figure  5.  SEM images of TiC products with different calcination time at 850 ℃

    图  6  当钛源(Ti∶TiO2)比例为5∶5时保温时长为2 h不同温度(900、950、1000 ℃)的TiC产物XRD谱

    Figure  6.  XRD patterns of TiC products calcinated at different temperatures for 2 h

    图  7  当钛源(Ti∶TiO2)比例为5∶5时保温时长为2 h不同温度(900(a)、950(b)、1000(c) ℃)的TiC产物SEM图

    Figure  7.  SEM images of TiC products calcinated at different temperatures (900 (a), 950 (b), 1000 (c) ℃) for 2 h with a titanium source (Ti∶TiO2) ratio of 5∶5

    图  8  当钛源(Ti∶TiO2)比例为7∶3时保温时长为2 h不同温度(900、950、1000 ℃)的TiC产物XRD谱

    Figure  8.  XRD patterns of TiC products calcinated at different temperatures (900, 950, 1000 ℃) for 2 h with a titanium source (Ti∶TiO2) ratio of 7∶3

    图  9  当钛源(Ti∶TiO2)比例为7∶3时保温时长为2 h不同温度(900、950、1000 ℃)的TiC产物SEM形貌

    Figure  9.  SEM images of TiC products calcinated at different temperatures (900, 950, 1000 ℃) for 2 h with a titanium source (Ti∶TiO2) ratio of 7∶3

    图  10  当钛源(Ti∶TiO2)比例为9∶1时保温时长为2 h不同温度(900、950、1000 ℃)的TiC产物XRD谱

    Figure  10.  XRD patterns of TiC products calcinated at different temperatures (900, 950, 1000 ℃) for 2 h with a titanium source (Ti∶TiO2) ratio of 9∶1

    图  11  当钛源(Ti∶TiO2)比例为9∶1时保温时长为2 h不同温度(900、950、1000 ℃)的TiC产物SEM形貌

    Figure  11.  SEM images of TiC products calcinated at different temperatures (900, 950, 1000 ℃) for 2 h with a titanium source (Ti∶TiO2) ratio of 9∶1

  • [1] Liu Yang, Zhang Haodong, Yuan Suiyan, et al. Study on the mechanical properties of titanium carbide silicon ceramic materials[J]. Modern Salt Chemical Industry, 2021,(5):74−75. (刘洋, 张浩东, 原遂严, 等. 碳化钛硅陶瓷材料力学性能研究[J]. 现代盐化工, 2021,(5):74−75.

    Liu Yang, Zhang Haodong, Yuan Suiyan, et al. Study on the mechanical properties of titanium carbide silicon ceramic materials[J]. Modern Salt Chemical Industry, 2021, (5): 74-75
    [2] Liu Ping'an, Zeng Lingke, Shui Anze, et al. Research progress in the preparation and application of ultrafine titanium carbide powder[J]. Weapon Materials Science and Engineering, 2006,29(5):82−85. (刘平安, 曾令可, 税安泽, 等. 超细碳化钛粉体的制备及应用研究进展[J]. 兵器材料科学与工程, 2006,29(5):82−85.

    Liu Ping'an, Zeng Lingke, Shui Anze, et al. Research progress in the preparation and application of ultrafine titanium carbide powder[J]. Weapon Materials Science and Engineering, 2006, 29 (5): 82-85
    [3] Xu Benping. Current status and latest progress in chemical phase analysis of vanadium and titanium in vanadium and titanium materials[J]. China Inorganic Analytical Chemistry, 2014,4(2):18−23. (徐本平. 钒钛物料中钒钛化学物相分析现状及最新进展[J]. 中国无机分析化学, 2014,4(2):18−23.

    Xu Benping. Current status and latest progress in chemical phase analysis of vanadium and titanium in vanadium and titanium materials[J]. China Inorganic Analytical Chemistry, 2014, 4 (2): 18-23
    [4] Bandar Almangour, Min-seok Baek, Dariusz Grzesiak, et al. Strengthening of stainless steel by titanium carbide addition and grain refinement during selective laser melting [J]. Materials Science & Engineering A , 2017: S0921509317315.
    [5] Kattamis T Z, Suganuma T. Solidification processing and tribological behavior of particulate TiC-ferrous matrix composites[J]. Materials Science and Engineering A, 1990,128(2):241−252. doi: 10.1016/0921-5093(90)90232-R
    [6] Sen Wei, Xu Baoqiang, Yang Bin, et al. Preparation of titanium carbide powder by vacuum carbothermal reduction method[J]. Chinese Journal of Non Ferrous Metals:English Edition, 2011,21(1):185−190. (森维, 徐宝强, 杨斌, 等. 真空碳热还原法制备碳化钛粉末[J]. 中国有色金属学报:英文版, 2011,21(1):185−190.

    Sen Wei, Xu Baoqiang, Yang Bin, et al. Preparation of titanium carbide powder by vacuum carbothermal reduction method[J]. Chinese Journal of Non Ferrous Metals: English Edition, 2011, 21 (1): 185-190
    [7] Wang Zhi, Yuan Zhangfu, Guo Zhancheng. Exploration of a new process for direct preparation of titanium alloy by molten salt electrolysis[J]. Non-ferrous Metals, 2003,55(4):32-43. (王志, 袁章福, 郭占成. 熔盐电解法直接制备钛合金新工艺探讨[J]. 有色金属, 2003,55(4):32-43.

    Wang Zhi, Yuan Zhangfu, Guo Zhancheng. Exploration of a new process for direct preparation of titanium alloy by molten salt electrolysis[J]. Non-ferrous Metals, 2003, 55 (4): 4
    [8] Hao Xian, Liang Feng, Li Hongxia, et al. Progress in the preparation of nano titanium carbide and its application in energy storage[J]. Material Introduction, 2021,35(S01):11-18. (郝娴, 梁峰, 李红霞, 等. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021,35(S01):11-18.

    Hao Xian, Liang Feng, Li Hongxia, et al. Progress in the preparation of nano titanium carbide and its application in energy storage[J]. Material Introduction, 2021, 35 (S01): 8
    [9] Wang Jinshu, Xing Pengfei, Li Lili, et al. Preparation and characterization of N doped nano TiO2 by mechanochemical method[J]. Journal of Beijing University of Technology, 2006,32(7):633−637. (王金淑, 邢朋飞, 李莉莉, 等. 机械化学法N掺杂纳米TiO2的制备与表征[J]. 北京工业大学学报, 2006,32(7):633−637.

    Wang Jinshu, Xing Pengfei, Li Lili, et al. Preparation and characterization of N doped nano TiO2 by mechanochemical method[J]. Journal of Beijing University of Technology, 2006, 32 (7): 633-637
    [10] Luo Xuming, Chen Yiming, Mu Yufeng. Self propagating high-temperature synthesis of non stoichiometric titanium carbide based cermets[J]. Material Development and Application, 1995,(5):20−23. (罗序明, 陈一鸣, 母育锋. 自蔓延高温合成非化学计量碳化钛基金属陶瓷[J]. 材料开发与应用, 1995,(5):20−23.

    Luo Xuming, Chen Yiming, Mu Yufeng. Self propagating high-temperature synthesis of non stoichiometric titanium carbide based cermets[J]. Material Development and Application, 1995, (5): 20-23
    [11] Lv Yanan, Chen Dong. Study on atomic diffusion behavior during the formation of titanium carbide particles[J]. Iron Steel Vanadium Titanium, 2021,42(3):143−147. (吕亚男, 陈栋. 碳化钛颗粒形成过程中原子扩散行为研究[J]. 钢铁钒钛, 2021,42(3):143−147.

    Lv Yanan, Chen Dong. Study on atomic diffusion behavior during the formation of titanium carbide particles[J]. Iron Steel Vanadium Titanium, 2021, 42 (3): 143-147
    [12] Zhou Yanli. Research on the salt separation process of sodium chloride and potassium chloride wastewater[J]. Hebei Chemical Industry, 2021,44(1):136−138. (周艳丽. 氯化钠氯化钾废水分盐工艺研究[J]. 河北化工, 2021,44(1):136−138.

    Zhou Yanli. Research on the salt separation process of sodium chloride and potassium chloride wastewater[J]. Hebei Chemical Industry, 2021, 44 (1): 136-138
  • 加载中
图(11)
计量
  • 文章访问数:  512
  • HTML全文浏览量:  177
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-27
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回