中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁基材料在生物可降解血管支架领域的研究进展

许雅南 王伟强 杨帅康 王轶农

许雅南, 王伟强, 杨帅康, 王轶农. 铁基材料在生物可降解血管支架领域的研究进展[J]. 钢铁钒钛, 2023, 44(4): 158-166. doi: 10.7513/j.issn.1004-7638.2023.04.023
引用本文: 许雅南, 王伟强, 杨帅康, 王轶农. 铁基材料在生物可降解血管支架领域的研究进展[J]. 钢铁钒钛, 2023, 44(4): 158-166. doi: 10.7513/j.issn.1004-7638.2023.04.023
Xu Yanan, Wang Weiqiang, Yang Shuaikang, Wang Yinong. Research progress of biodegradable iron-based materials for vascular stents[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 158-166. doi: 10.7513/j.issn.1004-7638.2023.04.023
Citation: Xu Yanan, Wang Weiqiang, Yang Shuaikang, Wang Yinong. Research progress of biodegradable iron-based materials for vascular stents[J]. IRON STEEL VANADIUM TITANIUM, 2023, 44(4): 158-166. doi: 10.7513/j.issn.1004-7638.2023.04.023

铁基材料在生物可降解血管支架领域的研究进展

doi: 10.7513/j.issn.1004-7638.2023.04.023
基金项目: 国家重点研究发展计划(2019YFA0705300);中央高校基础研究基金(DUT22YG118,LD202219)。
详细信息
    作者简介:

    许雅南,1996年出生,女,内蒙古赤峰人,博士研究生,主要研究方向为医用金属材料,E-mail:yananxu@mail.dlut.edu.cn

    通讯作者:

    王伟强,1974年出生,男,博士,辽宁大连人,副教授,主要研究方向为医用金属材料,E-mail:wangwq@dlut.edu.cn

  • 中图分类号: TG174,TB34

Research progress of biodegradable iron-based materials for vascular stents

  • 摘要: 铁基可降解金属材料是最有潜力替代永久性血管支架的材料之一,降解速率慢是制约其发展的主要原因。对可降解铁基血管支架材料近年来的研究进行了梳理、总结和展望,发现众多研究者通过调整其微观组织结构、表面处理、合金化、和“复合”材料设计等方式对其生物相容性、腐蚀降解行为、机械性能和磁性能等方面进行了优化,以期设计理想铁基可降解血管支架材料。然而,单一的微观组织结构调整,虽然保证了纯铁的生物相容性,但对降解性能的提升有限;通过特殊的表面处理技术,也可以提高纯铁近表区域的腐蚀速率,但是难以优化基体的腐蚀性能;合金化可以均匀地提高材料的综合性能,但是单一合金化的方式所制备的合金和理想血管支架的性能要求仍然有差距。认为在合金化的基础上进行“复合”材料设计,可以更好地优化材料的综合性能。
  • 图  1  理想可降解血管支架治疗过程

    (a)血管病变狭窄后植入支架;(b)血管重塑;(c)支架在体内均匀降解;(d)支架完全在体内消失

    Figure  1.  Ideal biodegradable vascular stent treatment process

    图  2  "复合" 材料设计示意

    Figure  2.  Schematic diagram of "composite" material design

  • [1] Ma Liyuan, Wang Zengwu, Fan Jing, et al. Summary of《China cardiovascular health and disease report 2021》[J]. Chinese Journal of Interventional Cardiology, 2022,30(7):487−496. (马丽媛, 王增武, 樊静, 等. 中国心血管健康与疾病报告2021概要[J]. 中国介入心脏病学杂志, 2022,30(7):487−496.

    Ma Liyuan, Wang Zengwu, Fan Jing, et al. Summary of《China cardiovascular health and disease report 2021》[J]. Chinese Journal of Interventional Cardiology, 2022, 30(7): 487-496
    [2] Daemen J, Boersma E, Flather M, et al. Long-term safety and efficacy of percutaneous coronary intervention with stenting and coronary artery bypass surgery for multivessel coronary artery disease: a meta-analysis with 5-year patient-level data from the ARTS, ERACI-II, MASS-II, and SoS trials[J]. Circulation, 2008,118(11):1146−1154. doi: 10.1161/circulationaha.107.752147
    [3] Serruys P W, Jaegere P D, Kiemeneij F, et al. A Comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease[J]. New England Journal of Medicine, 1994, 331: 489 - 495.
    [4] Onuma Y, Serruys P W. Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization[J]. Circulation, 2011,123(7):779−797. doi: 10.1161/CIRCULATIONAHA.110.971606
    [5] Zheng Y F, Gu X N, Witte F. Biodegradable metals[J]. Materials Science and Engineering, 2014,77:1−34. doi: 10.1016/j.mser.2014.01.001
    [6] Loffredo S, Hermawan H, Vedani M, et al. 20 - Absorbable metals for cardiovascular applications[M]. Niinomi M, ed. Metals for Biomedical Devices (Second Edition). Woodhead Publishing, 2019: 523-543.
    [7] Liu Y, Zheng Y F, Chen X H, et al. Fundamental theory of biodegradable metals—definition, criteria, and design[J]. Advanced Functional Materials, 2019,29(18):1805402. doi: 10.1002/adfm.201805402
    [8] Chen Q Z, Thouas G A. Metallic implant biomaterials[J]. Materials Science and Engineering, 2015,87:1−57. doi: 10.1016/j.mser.2014.10.001
    [9] Underwood E J. Trace elements in human and animal nutrition[J]. Soil Science, 1963, 95(4): 287.
    [10] Schinhammer M, Hanzi A C, Loffler J F, et al. Design strategy for biodegradable Fe-based alloys for medical applications[J]. Acta Biomaterialia, 2010,6(5):1705−1713. doi: 10.1016/j.actbio.2009.07.039
    [11] Peuster M, Wohlsein P, Brügmann M, et al. A novel approach to temporary stenting: Degradable cardiovascular stents produced from corrodible metal - Results 6-18 months after implantation into New Zealand white rabbits[J]. Heart, 2001,86(5):563−569. doi: 10.1136/heart.86.5.563
    [12] Peuster M, Hesse C, Schloo T, et al. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta[J]. Biomaterials, 2006,27(28):4955−4962. doi: 10.1016/j.biomaterials.2006.05.029
    [13] Ron W, Rajbabu P, Richard B, et al. Short-term effects of biocorrodible iron stents in porcine coronary arteries[J]. Journal of Interventional Cardiology, 2008,21(1):15−20. doi: 10.1111/j.1540-8183.2007.00319.x
    [14] Obayi C S, Tolouei R, Mostavan A, et al. Effect of grain sizes on mechanical properties and biodegradation behavior of pure iron for cardiovascular stent application[J]. Biomatter, 2016,6(1):959874. doi: 10.4161/21592527.2014.959874
    [15] Moravej M, Purnama A, Fiset M, et al. Electroformed pure iron as a new biomaterial for degradable stents: In vitro degradation and preliminary cell viability studies[J]. Acta Biomaterialia, 2010,6(5):1843−1851. doi: 10.1016/j.actbio.2010.01.008
    [16] Qi Y, Li X, He Y, et al. Mechanism of acceleration of iron corrosion by a polylactide coating[J]. ACS Applied Materials & Interfaces, 2019,11(1):202−218. doi: 10.1021/acsami.8b17125
    [17] Gorejova R, Orinakova R, Macko J, et al. Electrochemical behavior, biocompatibility and mechanical performance of biodegradable iron with PEI coating[J]. Journal of Biomedical Materals Research Part A, 2022,110(3):659−671. doi: 10.1002/jbm.a.37318
    [18] Cheng J, Huang T, Zheng Y F. Relatively uniform and accelerated degradation of pure iron coated with micro-patterned Au disc arrays[J]. Materials Science and Engineering:C, 2015,48:679−687. doi: 10.1016/j.msec.2014.12.053
    [19] Huang T, Zheng Y. Uniform and accelerated degradation of pure iron patterned by Pt disc arrays[J]. Scientific Reports, 2016,6:23627. doi: 10.1038/srep23627
    [20] Zhou J C, Yang Y Y, Alonso Frank M, et al. Accelerated degradation behavior and cytocompatibility of pure iron treated with sandblasting[J]. ACS Applied Materials & Interfaces, 2016,8(40):26482−26492. doi: 10.1021/acsami.6b07068
    [21] Bagherifard S, Molla M F, Kajanek D, et al. Accelerated biodegradation and improved mechanical performance of pure iron through surface grain refinement[J]. Acta Biomaterialia, 2019,98:88−102. doi: 10.1016/j.actbio.2019.05.033
    [22] Wang H N, Zheng Y, Li Y, et al. Improvement of in vitro corrosion and cytocompatibility of biodegradable Fe surface modified by Zn ion implantation[J]. Applied Surface Science, 2017,403:168−176. doi: 10.1016/j.apsusc.2017.01.158
    [23] Chen H Y, Zhang E L, Yang K. Microstructure, corrosion properties and bio-compatibility of calcium zinc phosphate coating on pure iron for biomedical application[J]. Materials Science and Engineering:C, 2014,34:201−206. doi: 10.1016/j.msec.2013.09.010
    [24] Zhu S, Huang N, Shu H, et al. Corrosion resistance and blood compatibility of lanthanum ion implanted pure iron by MEVVA[J]. Applied Surface Science, 2009,256(1):99−104. doi: 10.1016/j.apsusc.2009.07.082
    [25] Zhu S F, Huang N, Xu L, et al. Biocompatibility of Fe–O films synthesized by plasma immersion ion implantation and deposition[J]. Surface and Coatings Technology, 2009,203(10):1523−1529. doi: 10.1016/j.surfcoat.2008.11.033
    [26] Hermawan H, Dubé M D. Development of degradable Fe-35Mn alloy for biomedical application[J]. Advanced Materials Research, 2006,15-17:107−112. doi: 10.4028/www.scientific.net/AMR.15-17.107
    [27] Hermawan H, Purnama A, Dube D, et al. Fe-Mn alloys for metallic biodegradable stents: degradation and cell viability studies[J]. Acta Biomaterialia, 2010,6(5):1852−1860. doi: 10.1016/j.actbio.2009.11.025
    [28] Capek J, Kubasek J, Vojtech D, et al. Microstructural, mechanical, corrosion and cytotoxicity characterization of the hot forged FeMn30(%) alloy[J]. Materials Science and Engineering:C, 2016,58:900−908. doi: 10.1016/j.msec.2015.09.049
    [29] Traverson M, Heiden M, Stanciu L A, et al. In Vivo evaluation of biodegradability and biocompatibility of Fe30Mn alloy[J]. Veterinary and Comparative Orthopaedics and Traumatology, 2018,31(1):10−16. doi: 10.3415/VCOT-17-06-0080
    [30] Sotoudehbagha P, Sheibani S, Khakbiz M, et al. Novel antibacterial biodegradable Fe-Mn-Ag alloys produced by mechanical alloying[J]. Materials Science and Engineering:C, 2018,88:88−94. doi: 10.1016/j.msec.2018.03.005
    [31] Niendorf T, Brenne F, Hoyer P, et al. Processing of new materials by additive manufacturing: Iron-based alloys containing silver for biomedical applications[J]. Metallurgical and Materials Transactions A, 2015,46(7):2829−2833. doi: 10.1007/s11661-015-2932-2
    [32] Hong D, Chou D T, Velikokhatnyi O I, et al. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys[J]. Acta Biomaterialia, 2016,45:375−386. doi: 10.1016/j.actbio.2016.08.032
    [33] Xu W, Lu X, Tan L, et al. Study on properties of a novel biodegradable Fe-30Mn-1C alloy[J]. Acta Metallurgica Sinica, 2011,47(10):1342−1347. doi: 10.3724/SP.J.1037.2011.00258
    [34] Harjanto S, Pratesa Y, Suharno B, et al. Corrosion behavior of Fe-Mn-C alloy as degradable materials candidate fabricated via powder metallurgy process[J]. Advanced Materials Research, 2012: 386-389.
    [35] Liu B, Zheng Y F, Ruan L Q. In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material[J]. Materials Letters, 2011,65(3):540−543. doi: 10.1016/j.matlet.2010.10.068
    [36] Drevet R, Zhukova Y, Kadirov P, et al. Tunable corrosion behavior of calcium phosphate coated Fe-Mn-Si alloys for bone implant applications[J]. Metallurgical and Materials Transactions A, 2018,49(12):6553−6560. doi: 10.1007/s11661-018-4907-6
    [37] Hufenbach J, Wendrock H, Kochta F, et al. Novel biodegradable Fe-Mn-C-S alloy with superior mechanical and corrosion properties[J]. Materials Letters, 2017,186:330−333. doi: 10.1016/j.matlet.2016.10.037
    [38] Hufenbach J, Kochta F, Wendrock H, et al. S and B microalloying of biodegradable Fe-30Mn-1C - effects on microstructure, tensile properties, in vitro degradation and cytotoxicity[J]. Materials & Design, 2018,142:22−35. doi: 10.1016/j.matdes.2018.01.005
    [39] Venezuela J, Dargusch M S. Addressing the slow corrosion rate of biodegradable Fe-Mn: Current approaches and future trends[J]. Current Opinion in Solid State and Materials Science, 2020,24(3):100822. doi: 10.1016/j.cossms.2020.100822
    [40] Lin W, Zhang G, Cao P, et al. Cytotoxicity and its test methodology for a bioabsorbable nitrided iron stent[J]. Journal of Biomedical Materials Researcheh, 2015,103(4):764−776. doi: 10.1002/jbm.b.33246
    [41] Lin W, Qin L, Qi H, et al. Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold[J]. Acta Biomaterialia, 2017,54:454−468. doi: 10.1016/j.actbio.2017.03.020
    [42] Wang H, Zheng Y, Liu J, et al. In vitro corrosion properties and cytocompatibility of Fe-Ga alloys as potential biodegradable metallic materials[J]. Materials Science and Engineering:C, 2017,71:60−66. doi: 10.1016/j.msec.2016.09.086
    [43] Capek J, Msallamova S, Jablonska E, et al. A novel high-strength and highly corrosive biodegradable Fe-Pd alloy: Structural, mechanical and in vitro corrosion and cytotoxicity study[J]. Materials Science and Engineering:C, 2017,79:550−562. doi: 10.1016/j.msec.2017.05.100
    [44] Mostavan A, Paternoster C, Tolouei R, et al. Effect of electrolyte composition and deposition current for Fe/Fe-P electroformed bilayers for biodegradable metallic medical applications[J]. Materials Science and Engineering:C, 2017,70(1):195−206. doi: 10.1016/j.msec.2016.08.026
    [45] Liu B, Zheng Y F. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron[J]. Acta Biomaterialia, 2011,7(3):1407−1420. doi: 10.1016/j.actbio.2010.11.001
    [46] Xu Y N, Wang W Q, Yu F, et al. Effects of pulse frequency and current density on microstructure and properties of biodegradable Fe-Zn alloy[J]. Journal of Materials Research and Technology, 2022,18:44−58. doi: 10.1016/j.jmrt.2022.02.096
    [47] Xu Y N, Wang W Q, Yu F Y, et al. The enhancement of mechanical properties and uniform degradation of electrodeposited Fe-Zn alloys by multilayered design for biodegradable stent applications[J]. Acta Biomaterialia, 2023. https://doi.org/10.1016/j.actbio.2023.02.029.
    [48] Zheng J F, Xi Z W, Li Y, et al. Long-term safety and absorption assessment of a novel bioresorbable nitrided iron scaffold in porcine coronary artery[J]. Bioactive Materials, 2022,17:496−505. doi: 10.1016/j.bioactmat.2022.01.005
    [49] Zheng J F, Qiu H, Tian Y, et al. Preclinical evaluation of a novel sirolimus-eluting iron bioresorbable coronary scaffold in porcine coronary artery at 6 months[J]. JACC:Cardiovascular Interventions, 2019,12(3):245−255. doi: 10.1016/j.jcin.2018.10.020
  • 加载中
图(2)
计量
  • 文章访问数:  922
  • HTML全文浏览量:  157
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-20
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回