中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锌系和铝系钛白初品的分散性能对比研究

刘婵 殷鸿尧 杨芳 路瑞芳

刘婵, 殷鸿尧, 杨芳, 路瑞芳. 锌系和铝系钛白初品的分散性能对比研究[J]. 钢铁钒钛, 2024, 45(3): 39-45. doi: 10.7513/j.issn.1004-7638.2024.03.006
引用本文: 刘婵, 殷鸿尧, 杨芳, 路瑞芳. 锌系和铝系钛白初品的分散性能对比研究[J]. 钢铁钒钛, 2024, 45(3): 39-45. doi: 10.7513/j.issn.1004-7638.2024.03.006
Liu Chan, Yin Hongyao, Yang Fang, Lu Ruifang. Comparative study of dispersion performance of the zinc and aluminum salt treated rutile titanium dioxides[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 39-45. doi: 10.7513/j.issn.1004-7638.2024.03.006
Citation: Liu Chan, Yin Hongyao, Yang Fang, Lu Ruifang. Comparative study of dispersion performance of the zinc and aluminum salt treated rutile titanium dioxides[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 39-45. doi: 10.7513/j.issn.1004-7638.2024.03.006

锌系和铝系钛白初品的分散性能对比研究

doi: 10.7513/j.issn.1004-7638.2024.03.006
基金项目: 国家自然科学基金青年科学基金项目(编号:22108019)。
详细信息
    作者简介:

    刘婵,1987年出生,女,河南郑州人,高级工程师,主要从事钛白工艺优化和新产品开发工作,E-mail: liuc870216@163.com

    通讯作者:

    路瑞芳,1984年出生,河南开封人,博士,高级工程师,主要从事钛资源高效高值化利用研究,E-mail: lulu195658@163.com

  • 中图分类号: TF823,TB34

Comparative study of dispersion performance of the zinc and aluminum salt treated rutile titanium dioxides

  • 摘要: 选取某硫酸法钛白厂生产的锌系和铝系盐处理金红石初品作为试验原料,系统研究TiO2浓度、分散体系pH和表面吸附的化学成分等因素的变化对锌、铝两系初品悬浊液zeta电位的影响规律,对比分析了锌系和铝系初品分散稳定性的差异。结果表明,随着稀释浓度增高,铝系初品分散越来越稳定,而锌系则逐渐失稳;分散液pH从4.0升至10.0,铝系初品zeta电位较锌系更为显著,即铝系初品更易分散稳定;初品表面脱硫和脱羟基后,铝、锌两系初品的zeta电位随pH的变化规律没有改变,证明了表面吸附的化学成分并非构成两系初品分散差异性的原因。通过实验室单一盐处理-煅烧试验,进一步证明了Zn2+和Al3+掺杂是导致初品分散稳定性差异的根本原因,煅烧温度对初品表面电荷的变化有显著影响,对铝系初品的影响更显著。
  • 图  1  产线初品分散液的pH 和zeta电位随分散浓度的变化趋势

    Figure  1.  Change trends of pH and zeta potential versus dispersion concentration of on-site TiO2 particles

    图  2  铝系/锌系盐处理的产线初品分散液zeta电位随体系pH的变化

    Figure  2.  Trend of zeta potential as a function of pH in dispersion of on-site Al/Zn-doped TiO2 particles

    图  3  产线初品脱硫前后初品分散液的zeta电位随体系pH的变化

    Figure  3.  Trend of zeta potential as a function of pH in dispersion of on-site Al/Zn-doped TiO2 particles after desulfurization

    图  4  产线初品脱羟基后初品分散液的zeta电位随体系pH的变化

    Figure  4.  Trend of zeta potential as a function of pH in dispersion of the on-site Al/Zn-doped TiO2 particles after dehydroxylation

    图  5  产线锌系和铝系初品的团聚粒径分布

    Figure  5.  Distribution curves of aggregate particle size of on-site Al/Zn-doped TiO2 particles

    图  6  实验室锌/铝单一盐处理初品的zeta电位随pH变化趋势

    Figure  6.  Trend of zeta potential as a function of pH in dispersion of Al/Zn single-doped TiO2 particles from the laboratory

    表  1  仪器设备

    Table  1.   Instruments and equipments

    名称 型号 厂家
    pH计 PHSJ-3F 雷磁
    扫描电镜 JSM-7001F Thermal Field Emission
    X射线荧光光谱仪 S8 TIGER BRUKER
    碳硫仪 CS2000 ELTRA
    ICP-AES光谱仪 IRIS Intrepid Thermo Fisher Scientific
    zeta电位仪 Nano-ZS90 Malvern
    下载: 导出CSV

    表  2  锌系/铝系盐处理的产线初品不同pH条件下离子溶出结果

    Table  2.   Ion dissolution data of the on-site Al/Zn-doped TiO2 particles under different pH conditions

    初品 pH w(Zn2+)/% w(K+)/% w(Al3+)/%
    锌系 2.00 1.800 4.11
    6.81 0.001 3.00
    铝系 3.01 3.79 0.003
    8.89 2.53 <0.001
    下载: 导出CSV

    表  3  产线锌系和铝系初品的团聚粒径检测结果

    Table  3.   Aggregate particle size data of on-site Al/Zn-doped TiO2 particles

    初品 ZP/mV Z-Ave/nm Pk 1 Mean Int/nm Pk 1 Area Int/%
    锌系 –63.5 365.4 435.3 100
    铝系 –61.6 370 421.1 100
    下载: 导出CSV

    表  4  实验室锌/铝单一盐处理初品zeta电位与pH的线性拟合结果

    Table  4.   Linear fitting results of in dispersion of Al/Zn single-doped TiO2 particles from the laboratory

    盐处理剂 加量/% 煅烧温度/℃ 金红石含量/% 拟合公式 R-Sq/%
    ZnO 0.10 900 99.43 Zn-900 = 20.44–7.165pH 92.22
    950 99.47 Zn-950 = 14.56–6.510pH 89.15
    Al2O3 0.30 950 98.67 Al-950 = 28.90–9.085pH 89.16
    990 99.24 Al-990 = 36.98–9.421pH 94.70
    下载: 导出CSV
  • [1] Bi Sheng. Development and analysis on 2022 titanium dioxide industry in China[J]. Iron Steel Vanadium Titanium, 2023,44(1):1−3. (毕胜. 2022年中国钛白粉行业发展及分析[J]. 钢铁钒钛, 2023,44(1):1−3. doi: 10.7513/j.issn.1004-7638.2023.01.001

    Bi Sheng. Development and analysis on 2022 titanium dioxide industry in China[J]. Iron Steel Vanadium Titanium, 2023, 44(1): 1−3. doi: 10.7513/j.issn.1004-7638.2023.01.001
    [2] Dolganov, Aleksei Bishop, Matthew T Chen, et al. Rheological study and printability investigation of titania inks for direct ink writing process[J]. Ceramics International, 2021,47(9):12020−12027. doi: 10.1016/j.ceramint.2021.01.045
    [3] Kumarjyoti Roy, Swapan Kumar Mandal, Md Najib Alam, et al. A comparison between polyethylene glycol (PEG) and polypropylene glycol (PPG) treatment on the properties of nano-titanium dioxide (TiO2) based natural rubber (NR) nanocomposites[J]. Polym. Bull, 2016,73(11):3065−3079. doi: 10.1007/s00289-016-1641-3
    [4] Zhang Y, Yin H, Wang A, et al. Evolution of zirconia coating layer on rutile TiO2 surface and the pigmentary property[J]. Journal of Physics & Chemistry of Solids, 2010,71(10):1458−1466.
    [5] Karlsson M C F, Abbas Z, Bordes R, et al. Characterisation of silicon, zirconium and aluminium coated titanium dioxide pigments recovered from paint waste[J]. Dyes and Pigments, 2019,162:145−152. doi: 10.1016/j.dyepig.2018.06.028
    [6] Diebold U. The surfacescience of titanium dioxide[J]. Surface Science Reports, 2003,48(5):53−229.
    [7] Vargas W, Greenwood P, Otterstedt J , et al. Light scattering in pigmented coatings: experiments and theory[J]. Solar Energy, 2000, 68(6): 553−561.
    [8] Sun Sijia, Ding Hao, Luo Qin. Research on preparation of silica-TiO2 composite particles through mechanical grinding method and their pigment property[J]. China Powder Science and Technology, 2015,21(4):76−79,88. (孙思佳, 丁浩, 罗琴. 机械研磨法制备白炭黑-TiO2复合粉体及颜料性能研究[J]. 中国粉体技术, 2015,21(4):76−79,88.

    Sun Sijia, Ding Hao, Luo Qin. Research on preparation of silica-TiO2 composite particles through mechanical grinding method and their pigment property[J]. China Powder Science and Technology, 2015, 21(4): 76−79,88.
    [9] Wu Wangchao, Cui Jian, Jiang Hao, et al. Preparation of single particle dispersed titanium dioxide by wet grinding and its influencing factors[J]. China Powder Science and Technology, 2018,24(2):60−64,80. (吴王超, 崔健, 江浩, 等. 湿法研磨制备单颗粒分散二氧化钛及其影响因素[J]. 中国粉体技术, 2018,24(2):60−64,80. doi: 10.13732/j.issn.1008-5548.2018.02.010

    Wu Wangchao, Cui Jian, Jiang Hao, et al. Preparation of single particle dispersed titanium dioxide by wet grinding and its influencing factors[J]. China Powder Science and Technology, 2018, 24(2): 60−64,80. doi: 10.13732/j.issn.1008-5548.2018.02.010
    [10] Elmehasseb I, Kandil S, Elgendy K. Advanced visible-light applications utilizing modified Zn-doped TiO2 nanoparticles via non-metal in situ dual doping for wastewater detoxification[J]. Optik, 2020,213:164654. doi: 10.1016/j.ijleo.2020.164654
    [11] Hatta K, Higuchi M, Takahashi J, et al. Floating zone growth and characterization of aluminum-doped rutile single crystals[J]. Journal of Crystal Growth, 1996,163(3):279−284. doi: 10.1016/0022-0248(95)00972-8
    [12] Wu Jianchun, Lu Ruifang, Ma Weiping. Analysis of difference between zinc salt and aluminum salt treated titanium dioxide[J]. Iron Steel Vanadium Titanium, 2020,41(2):29−32. (吴健春, 路瑞芳, 马维平. 锌系与铝系盐处理钛白差异分析[J]. 钢铁钒钛, 2020,41(2):29−32. doi: 10.7513/j.issn.1004-7638.2020.02.006

    Wu Jianchun, Lu Ruifang, Ma Weiping. Analysis of difference between zinc salt and aluminum salt treated titanium dioxide[J]. Iron Steel Vanadium Titanium, 2020, 41(2): 29−32. doi: 10.7513/j.issn.1004-7638.2020.02.006
    [13] Chen X, Burda C. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials[J]. Journal of the American Chemical Society, 2008,130(15):5018−5019. doi: 10.1021/ja711023z
    [14] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001,293(5528):269−271. doi: 10.1126/science.1061051
    [15] Kobayashi T. Pigment dispersion in water-reducible paints[J]. Progress in Organic Coatings, 1996,28:79−87. doi: 10.1016/0300-9440(95)00608-7
    [16] Wang Haibo, Li Li, Luo Zhiqiang, et al. Research on slurry viscosity of zinc salt initial titanium dioxide[J]. Iron Steel Vanadium Titanium, 2019,40(2):61−65. (王海波, 李礼, 罗志强, 等. 锌盐类钛白初品浆料黏度研究[J]. 钢铁钒钛, 2019,40(2):61−65. doi: 10.7513/j.issn.1004-7638.2019.02.010

    Wang Haibo, Li Li, Luo Zhiqiang, et al. Research on slurry viscosity of zinc salt initial titanium dioxide[J]. Iron Steel Vanadium Titanium, 2019, 40(2): 61−65. doi: 10.7513/j.issn.1004-7638.2019.02.010
    [17] Yang Cheng, Wu Jizhong. Applied research on dispersion of titanium dioxide in hydrosolvents[J]. Inorganic Chemicals Industry, 2010,42(3):28−30. (杨成, 吴继忠. 钛白初品在水溶剂中的分散性应用研究[J]. 无机盐工业, 2010,42(3):28−30.

    Yang Cheng, Wu Jizhong. Applied research on dispersion of titanium dioxide in hydrosolvents[J]. Inorganic Chemicals Industry, 2010, 42(3): 28−30.
    [18] Wang Yongshan, Dou Jun, Miao Weiran, et al. Analysis of post-treatment technology of rutile titunium dioxide[J]. Modern Chemical Research, 2021(10):123−124. (王永珊, 豆君, 苗委然, 等. 金红石型钛白粉后处理工艺技术分析[J]. 当代化工研究, 2021(10):123−124. doi: 10.3969/j.issn.1672-8114.2021.10.061

    Wang Yongshan, Dou Jun, Miao Weiran, et al. Analysis of post-treatment technology of rutile titunium dioxide[J]. Modern Chemical Research, 2021(10): 123−124. doi: 10.3969/j.issn.1672-8114.2021.10.061
    [19] Liu Rulin. Study of electronic structure and transportation behavior of defects in rutile TiO2[D]. Changsha: National University of Defense Technology, 2018. (刘汝霖. 金红石型二氧化钛中缺陷的电子结构及其输运性质研究[D]. 北京: 国防科技大学, 2018.

    Liu Rulin. Study of electronic structure and transportation behavior of defects in rutile TiO2[D]. Changsha: National University of Defense Technology, 2018.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  319
  • HTML全文浏览量:  85
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-20
  • 刊出日期:  2024-07-02

目录

    /

    返回文章
    返回