留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TC4合金变截面构件熔模铸造工艺优化及缺陷控制

贺同正 陈玉勇 吴敬玺 罗国军 沈选金 唐丽英

贺同正, 陈玉勇, 吴敬玺, 罗国军, 沈选金, 唐丽英. TC4合金变截面构件熔模铸造工艺优化及缺陷控制[J]. 钢铁钒钛, 2024, 45(3): 46-54. doi: 10.7513/j.issn.1004-7638.2024.03.007
引用本文: 贺同正, 陈玉勇, 吴敬玺, 罗国军, 沈选金, 唐丽英. TC4合金变截面构件熔模铸造工艺优化及缺陷控制[J]. 钢铁钒钛, 2024, 45(3): 46-54. doi: 10.7513/j.issn.1004-7638.2024.03.007
He Tongzheng, Chen Yuyong, Wu Jingxi, Luo Guojun, Shen Xuanjin, Tang Liying. Optimization of the investment casting process and defect control for variable cross−section components of TC4 alloy[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 46-54. doi: 10.7513/j.issn.1004-7638.2024.03.007
Citation: He Tongzheng, Chen Yuyong, Wu Jingxi, Luo Guojun, Shen Xuanjin, Tang Liying. Optimization of the investment casting process and defect control for variable cross−section components of TC4 alloy[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 46-54. doi: 10.7513/j.issn.1004-7638.2024.03.007

TC4合金变截面构件熔模铸造工艺优化及缺陷控制

doi: 10.7513/j.issn.1004-7638.2024.03.007
详细信息
    作者简介:

    贺同正,1971年出生,男,河南南阳人,博士研究生,高级工程师,研究方向钛合金精密铸造,E-mail: hetongzheng@163.com

  • 中图分类号: TF823,TG249

Optimization of the investment casting process and defect control for variable cross−section components of TC4 alloy

  • 摘要: 以TC4合金变截面构件为研究对象,基于正交试验设计,采用ProCAST软件对铸件的离心熔模铸造工艺进行了优化。同时,对铸件的充型与凝固行为进行了数值分析,并对铸件质量及力学性能进行了表征。结果表明,缩松缩孔集中分布在铸件顶部,少量缩松缩孔离散分布在铸件中部或底部,孤立液相区是导致缩松缩孔形成的主要原因,熔体流动停止表现出窄结晶温度范围合金特征;应力集中主要发生在内浇道与铸件连接处,较大的结构变化是诱使应力集中产生的主要原因。对铸件内部质量及尺寸进行表征分析,发现铸件内部无缩松缩孔存在,铸件尺寸可以较好地满足设计要求,未发生明显变形。热等静压态铸件的室温抗拉强度为953.5 MPa、屈服强度为835.0 MPa、断后伸长率为10.0%,可以较好地满足实际服役要求。
  • 图  1  铸件的三维模型

    Figure  1.  Three−dimensional models of the casting

    图  2  拉伸试样尺寸(单位:mm)

    Figure  2.  Size of tensile specimens

    图  3  铸件正交试验缩松缩孔模拟结果

    Figure  3.  Results of shrinkage porosity simulation in the orthogonal experiment of the casting

    (a) A1B1C1D1; (b) A1B2C2D2; (c) A1B3C3D3; (d) A2B1C2D3; (e) A2B2C3D1; (f) A2B3C1D2; (g) A3B1C3D2; (h) A3B2C1D3; (i) A3B3C2D1

    图  4  充型与凝固过程(优化方案)

    (a)~(d) 充型过程;(e)~(h) 充型速度; (i)~(l) 凝固过程

    Figure  4.  Filling and solidification processes (optimization scheme)

    图  5  缩松缩孔与孤立液相区(优化方案)

    (a) 缩松缩孔; (b) 顶部孤立液相区; (c)、(d) 中部和底部的孤立液相区

    Figure  5.  Shrinkage porosity and the isolated liquid−phase zones (optimization scheme)

    图  6  组织模拟(优化方案)

    (a)、(b) 凝固初期; (c)~(e) 凝固中期; (f) 凝固末期; (b1) 图(b)中虚线框部分的局部放大; (d1) 图(d)中虚线框部分的局部放大;(f1) 图(f)中虚线框部分的局部放大

    Figure  6.  Simulation results of macrostructure (optimization scheme)

    图  7  熔体流动终止示意

    (a) 充型过程; (b) 流动终止阶段; (c) 完全凝固阶段

    Figure  7.  The cessation mechanism of flow

    图  8  有效应力及变形(优化方案)

    (a) 有效应力; (b) 网格变形; (c) 间隙宽度

    Figure  8.  Effective stress and deformation (optimization scheme)

    图  9  陶瓷型壳与铸件的宏观形貌

    (a) 型壳; (b) 铸件

    Figure  9.  Macromorphology of the ceramic shell and the casting

    图  11  热等静压态微观组织(附铸试样)

    Figure  11.  Microstructure of HIPed (excised bar samples)

    (a) OM; (b) SEM

    图  10  铸件质量分析

    (a)~(d) X射线无损探伤; (e) 解剖示意; (f) 解剖实物; (g) 铸件变形拟合; (h) 铸件剖面变形拟合

    Figure  10.  Quality analysis of the casting

    图  12  热等静压态铸件的断口形貌(附铸试样)

    Figure  12.  Fracture morphology of HIPed castings (excised bar samples)

    表  1  正交试验设计

    Table  1.   Orthogonal experimental design

    序号 A / ℃ B / ℃ C /(kg·s−1) D/ (r·min−1) 方案
    1 1680 300 3 350 A1B1C1D1
    2 1680 350 5 450 A1B2C2D2
    3 1680 400 7 550 A1B3C3D3
    4 1700 300 5 550 A2B1C2D3
    5 1700 350 7 350 A2B2C3D1
    6 1700 400 3 450 A2B3C1D2
    7 1750 300 7 450 A3B1C3D2
    8 1750 350 3 550 A3B2C1D3
    9 1750 400 5 350 A3B3C2D1
    A代表浇注温度(℃);B代表型壳预热温度 (℃);C代表浇注速率(kg/s);D代表离心转速(r/min)。
    下载: 导出CSV

    表  2  正交试验直观分析

    Table  2.   Intuitive analysis table of orthogonal experiment

    序号A/℃B/℃C/ (kg·s−1)D/(r·min−1)方案缩松缩孔
    /cm3
    116803003350A1B1C1D15.1081
    216803505450A1B2C2D25.1409
    316804007550A1B3C3D35.2849
    417003005550A2B1C2D35.5014
    517003507350A2B2C3D15.4112
    617004003450A2B3C1D25.1672
    717503007450A3B1C3D26.1459
    817503503550A3B2C1D35.3232
    917504005350A3B3C2D15.4044
    K115.533916.755415.598515.9237
    K216.079815.875316.046716.4540
    K316.873515.856516.842016.1095
    R1.33960.89891.24350.5303
    下载: 导出CSV
  • [1] Cui C X, Hu B M, Zhao L, et al. Ti−based alloy production technology, market prospects and industry development[J]. Materials & Design, 2011,32(3):1684−1691.
    [2] Hou Z Q, Li B H, Feng G W, et al. Development and application of Ti−based alloy casting technologies in the field of aerospace[J]. Aerospace Shanghai (Chinese & English), 2022,39(1):1−14.
    [3] Shao H, Li Y, Zhao P, et al. Numerical simulation of centrifugal casting process of large thin−wall Ti alloy casting[J]. Materials Science Forum, 2016,850:469−481. doi: 10.4028/www.scientific.net/MSF.850.469
    [4] Suzuki K, Yao M. Simulation of mold filling and solidification during centrifugal precision casting of Ti−6Al−4V alloy[J]. Metals and Materials International, 2004,10(1):33−38. doi: 10.1007/BF03027361
    [5] Jia Y, Xiao S L, Tian J, et al. Modeling of TiAl alloy grating by investment casting[J]. Metals, 2015,5:2328−2339. doi: 10.3390/met5042328
    [6] Xiong C, Ma Y C, Chen B, et al. Modeling of filling and solidification process for TiAl exhaust valves during suction casting[J]. Acta Metallurgica Sinica (English Letters), 2013,26:33−48. doi: 10.1007/s40195-011-0503-0
    [7] Shao Heng. Numerical simulation of centrifugal investment casting of large thin−wall complex Ti−6Al−4V castings[D]. Beijing: Tsinghua University, 2017. (邵珩. 大型复杂薄壁Ti−6Al−4V合金铸件离心熔模铸造过程数值模拟[D]. 北京: 清华大学, 2017.

    Shao Heng. Numerical simulation of centrifugal investment casting of large thin−wall complex Ti−6Al−4V castings[D]. Beijing: Tsinghua University, 2017.
    [8] Yang Liang. Composition optimization and investment casting of cast high Nb−TiAl alloy[D]. Beijing: University of Science and Technology Beijing, 2015. (杨亮. 铸造高Nb−TiAl合金成分优化及其精密铸造工艺研究[D]. 北京: 北京科技大学, 2015.

    Yang Liang. Composition optimization and investment casting of cast high Nb−TiAl alloy[D]. Beijing: University of Science and Technology Beijing, 2015.
    [9] He T, Chen Y Y. Influence of mold design on shrinkage porosity of Ti−6Al−4V alloy ingots[J]. Metals, 2022,12:2122. doi: 10.3390/met12122122
    [10] Wang J Q, Fu P X, Liu H W, et al. Shrinkage porosity criteria and optimized design of a 100−ton 30Cr2Ni4MoV forging ingot[J]. Materials & Design, 2012,35:446−456.
    [11] Jia Yi. The effects of B and Y on microstructure and properties of TiAl alloy and investment casting of TiAl alloy[D]. Harbin: Harbin Institute of Technology, 2016. (贾燚. 硼及钇对钛铝合金组织性能的影响及精密铸造工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    Jia Yi. The effects of B and Y on microstructure and properties of TiAl alloy and investment casting of TiAl alloy[D]. Harbin: Harbin Institute of Technology, 2016.
    [12] Yang L, Chai L H, Zhang L Q, et al. Numerical simulation and process optimization of investment casting of the blades for high Nb containing TiAl alloy[J]. Materials Science Forum, 2013,747:105−110.
    [13] Liu X J, Hao Z J, Huang M. Optimization of vacuum counter−pressure casting process for an aluminum alloy casing using numerical simulation and defect recognition techniques[J]. The International Journal of Advanced Manufacturing Technology, 2020,107:2783−2795. doi: 10.1007/s00170-020-05018-1
    [14] Yang J R, Wang H, Wu Y L, et al. Numerical calculation and experimental evaluation of counter−gravity investment casting of Ti−48Al−2Cr−2Nb alloy[J]. The International Journal of Advanced Manufacturing Technology, 2018,96:3295−3309. doi: 10.1007/s00170-018-1784-5
    [15] Brotzu A, Felli F, Mondal A, et al. Production issues in the manufacturing of TiAl turbine blades by investment casting[J]. Procedia Structural Integrity, 2020,25:79−87. doi: 10.1016/j.prostr.2020.04.012
    [16] Wu J X, Chen Y Y, Du Z M, et al. Modeling of investment casting of Ti48Al48Cr2Nb2 (at%) alloy air rudder skeleton[J]. International Journal of Metalcasting, 2023,17:2022−2016.
    [17] Tian J, Chen Y F, Xiao S L, et al. Influence of pouring temperature and mold preheating temperature on investment casting of TiAl[C]// Proceedings of 69th World Foundry Congress. Hangzhou: World Foundry Organization, 2010.
    [18] Jia L M, Xu D M, Li M, et al. Casting defects of Ti−6Al−4V alloy in vertical centrifugal casting processes with graphite molds[J]. Metals and Materials International, 2012,18(1):55−61. doi: 10.1007/s12540-012-0007-0
    [19] Liu J G, Yang Lei, Fang X G, et al. Numerical simulation and optimization of shell mould casting process for leaf spring bracket[J]. China Foundry, 2020,17:35−41. doi: 10.1007/s41230-020-9089-3
    [20] Dahle A K, Karlsen S, Arnberg L. Effect of grain refinement on the fluidity of some binary Al−Cu and Al−Mg alloys[J]. International Journal of Cast Metals Research, 1996,9:103−112. doi: 10.1080/13640461.1996.11819649
    [21] Wang J H, Guo X L, Wang L Q, et al. The influence of B4C on the fluidity of Ti−6Al−4V−xB4C composites[J]. Materials Transactions, 2014,55(9):1367−1371. doi: 10.2320/matertrans.M2014142
    [22] Yang L, Chai L H, Liang Y F, et al. Numerical simulation and experimental verification of gravity and centrifugal investment casting low pressure turbine blades for high Nb−TiAl alloy[J]. Intermetallics, 2015,66:149−155. doi: 10.1016/j.intermet.2015.07.006
    [23] Cabibbo M, Zherebtsov S, Mironov S, et al. Loss of coherency and interphase α/β angular deviation from the Burgers orientation relationship in a Ti−6Al−4V alloy compressed at 800 ℃[J]. Journal of Materials Science, 2012,48(3):1100−1110.
    [24] Yang J H, Xiao S L, Chen Y Y, et al. Effects of nano−Y2O3 addition on the microstructure evolution and tensile properties of a near−α titanium alloy[J]. Materials Science & Engineering A, 2019,761:137977.
    [25] Zhang Shouyin. Investigation of solidification behavior and microstructure evolution in ZTC4 alloys[D]. Xi,an: Northwestern Polytechnical University, 2016. (张守银. ZTC4钛合金凝固行为及组织演化研究[D]. 西安: 西北工业大学, 2016.

    Zhang Shouyin. Investigation of solidification behavior and microstructure evolution in ZTC4 alloys[D]. Xi,an: Northwestern Polytechnical University, 2016.
    [26] Yang Jianhui. Research on deformation behavior and microstructure and mechanical properties of (TiB+TiC+Y2O3)/α−Ti composites[D]. Harbin: Harbin Institute of Technology, 2020. (杨建辉. (TiB+TiC+Y2O3)/α−Ti 复合材料变形行为及组织性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    Yang Jianhui. Research on deformation behavior and microstructure and mechanical properties of (TiB+TiC+Y2O3)/α−Ti composites[D]. Harbin: Harbin Institute of Technology, 2020.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  32
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-23
  • 刊出日期:  2024-07-02

目录

    /

    返回文章
    返回