中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TC4合金变截面构件熔模铸造工艺优化及缺陷控制

贺同正 陈玉勇 吴敬玺 罗国军 沈选金 唐丽英

贺同正, 陈玉勇, 吴敬玺, 罗国军, 沈选金, 唐丽英. TC4合金变截面构件熔模铸造工艺优化及缺陷控制[J]. 钢铁钒钛, 2024, 45(3): 46-54. doi: 10.7513/j.issn.1004-7638.2024.03.007
引用本文: 贺同正, 陈玉勇, 吴敬玺, 罗国军, 沈选金, 唐丽英. TC4合金变截面构件熔模铸造工艺优化及缺陷控制[J]. 钢铁钒钛, 2024, 45(3): 46-54. doi: 10.7513/j.issn.1004-7638.2024.03.007
He Tongzheng, Chen Yuyong, Wu Jingxi, Luo Guojun, Shen Xuanjin, Tang Liying. Optimization of the investment casting process and defect control for variable cross−section components of TC4 alloy[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 46-54. doi: 10.7513/j.issn.1004-7638.2024.03.007
Citation: He Tongzheng, Chen Yuyong, Wu Jingxi, Luo Guojun, Shen Xuanjin, Tang Liying. Optimization of the investment casting process and defect control for variable cross−section components of TC4 alloy[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 46-54. doi: 10.7513/j.issn.1004-7638.2024.03.007

TC4合金变截面构件熔模铸造工艺优化及缺陷控制

doi: 10.7513/j.issn.1004-7638.2024.03.007
详细信息
    作者简介:

    贺同正,1971年出生,男,河南南阳人,博士研究生,高级工程师,研究方向钛合金精密铸造,E-mail: hetongzheng@163.com

  • 中图分类号: TF823,TG249

Optimization of the investment casting process and defect control for variable cross−section components of TC4 alloy

  • 摘要: 以TC4合金变截面构件为研究对象,基于正交试验设计,采用ProCAST软件对铸件的离心熔模铸造工艺进行了优化。同时,对铸件的充型与凝固行为进行了数值分析,并对铸件质量及力学性能进行了表征。结果表明,缩松缩孔集中分布在铸件顶部,少量缩松缩孔离散分布在铸件中部或底部,孤立液相区是导致缩松缩孔形成的主要原因,熔体流动停止表现出窄结晶温度范围合金特征;应力集中主要发生在内浇道与铸件连接处,较大的结构变化是诱使应力集中产生的主要原因。对铸件内部质量及尺寸进行表征分析,发现铸件内部无缩松缩孔存在,铸件尺寸可以较好地满足设计要求,未发生明显变形。热等静压态铸件的室温抗拉强度为953.5 MPa、屈服强度为835.0 MPa、断后伸长率为10.0%,可以较好地满足实际服役要求。
  • 图  1  铸件的三维模型

    Figure  1.  Three−dimensional models of the casting

    图  2  拉伸试样尺寸(单位:mm)

    Figure  2.  Size of tensile specimens

    图  3  铸件正交试验缩松缩孔模拟结果

    Figure  3.  Results of shrinkage porosity simulation in the orthogonal experiment of the casting

    (a) A1B1C1D1; (b) A1B2C2D2; (c) A1B3C3D3; (d) A2B1C2D3; (e) A2B2C3D1; (f) A2B3C1D2; (g) A3B1C3D2; (h) A3B2C1D3; (i) A3B3C2D1

    图  4  充型与凝固过程(优化方案)

    (a)~(d) 充型过程;(e)~(h) 充型速度; (i)~(l) 凝固过程

    Figure  4.  Filling and solidification processes (optimization scheme)

    图  5  缩松缩孔与孤立液相区(优化方案)

    (a) 缩松缩孔; (b) 顶部孤立液相区; (c)、(d) 中部和底部的孤立液相区

    Figure  5.  Shrinkage porosity and the isolated liquid−phase zones (optimization scheme)

    图  6  组织模拟(优化方案)

    (a)、(b) 凝固初期; (c)~(e) 凝固中期; (f) 凝固末期; (b1) 图(b)中虚线框部分的局部放大; (d1) 图(d)中虚线框部分的局部放大;(f1) 图(f)中虚线框部分的局部放大

    Figure  6.  Simulation results of macrostructure (optimization scheme)

    图  7  熔体流动终止示意

    (a) 充型过程; (b) 流动终止阶段; (c) 完全凝固阶段

    Figure  7.  The cessation mechanism of flow

    图  8  有效应力及变形(优化方案)

    (a) 有效应力; (b) 网格变形; (c) 间隙宽度

    Figure  8.  Effective stress and deformation (optimization scheme)

    图  9  陶瓷型壳与铸件的宏观形貌

    (a) 型壳; (b) 铸件

    Figure  9.  Macromorphology of the ceramic shell and the casting

    图  11  热等静压态微观组织(附铸试样)

    Figure  11.  Microstructure of HIPed (excised bar samples)

    (a) OM; (b) SEM

    图  10  铸件质量分析

    (a)~(d) X射线无损探伤; (e) 解剖示意; (f) 解剖实物; (g) 铸件变形拟合; (h) 铸件剖面变形拟合

    Figure  10.  Quality analysis of the casting

    图  12  热等静压态铸件的断口形貌(附铸试样)

    Figure  12.  Fracture morphology of HIPed castings (excised bar samples)

    表  1  正交试验设计

    Table  1.   Orthogonal experimental design

    序号 A / ℃ B / ℃ C /(kg·s−1) D/ (r·min−1) 方案
    1 1680 300 3 350 A1B1C1D1
    2 1680 350 5 450 A1B2C2D2
    3 1680 400 7 550 A1B3C3D3
    4 1700 300 5 550 A2B1C2D3
    5 1700 350 7 350 A2B2C3D1
    6 1700 400 3 450 A2B3C1D2
    7 1750 300 7 450 A3B1C3D2
    8 1750 350 3 550 A3B2C1D3
    9 1750 400 5 350 A3B3C2D1
    A代表浇注温度(℃);B代表型壳预热温度 (℃);C代表浇注速率(kg/s);D代表离心转速(r/min)。
    下载: 导出CSV

    表  2  正交试验直观分析

    Table  2.   Intuitive analysis table of orthogonal experiment

    序号A/℃B/℃C/ (kg·s−1)D/(r·min−1)方案缩松缩孔
    /cm3
    116803003350A1B1C1D15.1081
    216803505450A1B2C2D25.1409
    316804007550A1B3C3D35.2849
    417003005550A2B1C2D35.5014
    517003507350A2B2C3D15.4112
    617004003450A2B3C1D25.1672
    717503007450A3B1C3D26.1459
    817503503550A3B2C1D35.3232
    917504005350A3B3C2D15.4044
    K115.533916.755415.598515.9237
    K216.079815.875316.046716.4540
    K316.873515.856516.842016.1095
    R1.33960.89891.24350.5303
    下载: 导出CSV
  • [1] Cui C X, Hu B M, Zhao L, et al. Ti−based alloy production technology, market prospects and industry development[J]. Materials & Design, 2011,32(3):1684−1691.
    [2] Hou Z Q, Li B H, Feng G W, et al. Development and application of Ti−based alloy casting technologies in the field of aerospace[J]. Aerospace Shanghai (Chinese & English), 2022,39(1):1−14.
    [3] Shao H, Li Y, Zhao P, et al. Numerical simulation of centrifugal casting process of large thin−wall Ti alloy casting[J]. Materials Science Forum, 2016,850:469−481. doi: 10.4028/www.scientific.net/MSF.850.469
    [4] Suzuki K, Yao M. Simulation of mold filling and solidification during centrifugal precision casting of Ti−6Al−4V alloy[J]. Metals and Materials International, 2004,10(1):33−38. doi: 10.1007/BF03027361
    [5] Jia Y, Xiao S L, Tian J, et al. Modeling of TiAl alloy grating by investment casting[J]. Metals, 2015,5:2328−2339. doi: 10.3390/met5042328
    [6] Xiong C, Ma Y C, Chen B, et al. Modeling of filling and solidification process for TiAl exhaust valves during suction casting[J]. Acta Metallurgica Sinica (English Letters), 2013,26:33−48. doi: 10.1007/s40195-011-0503-0
    [7] Shao Heng. Numerical simulation of centrifugal investment casting of large thin−wall complex Ti−6Al−4V castings[D]. Beijing: Tsinghua University, 2017. (邵珩. 大型复杂薄壁Ti−6Al−4V合金铸件离心熔模铸造过程数值模拟[D]. 北京: 清华大学, 2017.

    Shao Heng. Numerical simulation of centrifugal investment casting of large thin−wall complex Ti−6Al−4V castings[D]. Beijing: Tsinghua University, 2017.
    [8] Yang Liang. Composition optimization and investment casting of cast high Nb−TiAl alloy[D]. Beijing: University of Science and Technology Beijing, 2015. (杨亮. 铸造高Nb−TiAl合金成分优化及其精密铸造工艺研究[D]. 北京: 北京科技大学, 2015.

    Yang Liang. Composition optimization and investment casting of cast high Nb−TiAl alloy[D]. Beijing: University of Science and Technology Beijing, 2015.
    [9] He T, Chen Y Y. Influence of mold design on shrinkage porosity of Ti−6Al−4V alloy ingots[J]. Metals, 2022,12:2122. doi: 10.3390/met12122122
    [10] Wang J Q, Fu P X, Liu H W, et al. Shrinkage porosity criteria and optimized design of a 100−ton 30Cr2Ni4MoV forging ingot[J]. Materials & Design, 2012,35:446−456.
    [11] Jia Yi. The effects of B and Y on microstructure and properties of TiAl alloy and investment casting of TiAl alloy[D]. Harbin: Harbin Institute of Technology, 2016. (贾燚. 硼及钇对钛铝合金组织性能的影响及精密铸造工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    Jia Yi. The effects of B and Y on microstructure and properties of TiAl alloy and investment casting of TiAl alloy[D]. Harbin: Harbin Institute of Technology, 2016.
    [12] Yang L, Chai L H, Zhang L Q, et al. Numerical simulation and process optimization of investment casting of the blades for high Nb containing TiAl alloy[J]. Materials Science Forum, 2013,747:105−110.
    [13] Liu X J, Hao Z J, Huang M. Optimization of vacuum counter−pressure casting process for an aluminum alloy casing using numerical simulation and defect recognition techniques[J]. The International Journal of Advanced Manufacturing Technology, 2020,107:2783−2795. doi: 10.1007/s00170-020-05018-1
    [14] Yang J R, Wang H, Wu Y L, et al. Numerical calculation and experimental evaluation of counter−gravity investment casting of Ti−48Al−2Cr−2Nb alloy[J]. The International Journal of Advanced Manufacturing Technology, 2018,96:3295−3309. doi: 10.1007/s00170-018-1784-5
    [15] Brotzu A, Felli F, Mondal A, et al. Production issues in the manufacturing of TiAl turbine blades by investment casting[J]. Procedia Structural Integrity, 2020,25:79−87. doi: 10.1016/j.prostr.2020.04.012
    [16] Wu J X, Chen Y Y, Du Z M, et al. Modeling of investment casting of Ti48Al48Cr2Nb2 (at%) alloy air rudder skeleton[J]. International Journal of Metalcasting, 2023,17:2022−2016.
    [17] Tian J, Chen Y F, Xiao S L, et al. Influence of pouring temperature and mold preheating temperature on investment casting of TiAl[C]// Proceedings of 69th World Foundry Congress. Hangzhou: World Foundry Organization, 2010.
    [18] Jia L M, Xu D M, Li M, et al. Casting defects of Ti−6Al−4V alloy in vertical centrifugal casting processes with graphite molds[J]. Metals and Materials International, 2012,18(1):55−61. doi: 10.1007/s12540-012-0007-0
    [19] Liu J G, Yang Lei, Fang X G, et al. Numerical simulation and optimization of shell mould casting process for leaf spring bracket[J]. China Foundry, 2020,17:35−41. doi: 10.1007/s41230-020-9089-3
    [20] Dahle A K, Karlsen S, Arnberg L. Effect of grain refinement on the fluidity of some binary Al−Cu and Al−Mg alloys[J]. International Journal of Cast Metals Research, 1996,9:103−112. doi: 10.1080/13640461.1996.11819649
    [21] Wang J H, Guo X L, Wang L Q, et al. The influence of B4C on the fluidity of Ti−6Al−4V−xB4C composites[J]. Materials Transactions, 2014,55(9):1367−1371. doi: 10.2320/matertrans.M2014142
    [22] Yang L, Chai L H, Liang Y F, et al. Numerical simulation and experimental verification of gravity and centrifugal investment casting low pressure turbine blades for high Nb−TiAl alloy[J]. Intermetallics, 2015,66:149−155. doi: 10.1016/j.intermet.2015.07.006
    [23] Cabibbo M, Zherebtsov S, Mironov S, et al. Loss of coherency and interphase α/β angular deviation from the Burgers orientation relationship in a Ti−6Al−4V alloy compressed at 800 ℃[J]. Journal of Materials Science, 2012,48(3):1100−1110.
    [24] Yang J H, Xiao S L, Chen Y Y, et al. Effects of nano−Y2O3 addition on the microstructure evolution and tensile properties of a near−α titanium alloy[J]. Materials Science & Engineering A, 2019,761:137977.
    [25] Zhang Shouyin. Investigation of solidification behavior and microstructure evolution in ZTC4 alloys[D]. Xi,an: Northwestern Polytechnical University, 2016. (张守银. ZTC4钛合金凝固行为及组织演化研究[D]. 西安: 西北工业大学, 2016.

    Zhang Shouyin. Investigation of solidification behavior and microstructure evolution in ZTC4 alloys[D]. Xi,an: Northwestern Polytechnical University, 2016.
    [26] Yang Jianhui. Research on deformation behavior and microstructure and mechanical properties of (TiB+TiC+Y2O3)/α−Ti composites[D]. Harbin: Harbin Institute of Technology, 2020. (杨建辉. (TiB+TiC+Y2O3)/α−Ti 复合材料变形行为及组织性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    Yang Jianhui. Research on deformation behavior and microstructure and mechanical properties of (TiB+TiC+Y2O3)/α−Ti composites[D]. Harbin: Harbin Institute of Technology, 2020.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  239
  • HTML全文浏览量:  70
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-23
  • 刊出日期:  2024-07-02

目录

    /

    返回文章
    返回