中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛酸锂的碳包覆、紫外辐照改性及电化学性能研究

李云凤 武传宝 王允威 冉思宇 郑宇茜

李云凤, 武传宝, 王允威, 冉思宇, 郑宇茜. 钛酸锂的碳包覆、紫外辐照改性及电化学性能研究[J]. 钢铁钒钛, 2024, 45(3): 71-78. doi: 10.7513/j.issn.1004-7638.2024.03.010
引用本文: 李云凤, 武传宝, 王允威, 冉思宇, 郑宇茜. 钛酸锂的碳包覆、紫外辐照改性及电化学性能研究[J]. 钢铁钒钛, 2024, 45(3): 71-78. doi: 10.7513/j.issn.1004-7638.2024.03.010
Li Yunfeng, Wu Chuanbao, Wang Yunwei, Ran Siyu, Zheng Yuqian. Carbon coating, UV irradiation modification of lithium titanate and their electrochemical properties[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 71-78. doi: 10.7513/j.issn.1004-7638.2024.03.010
Citation: Li Yunfeng, Wu Chuanbao, Wang Yunwei, Ran Siyu, Zheng Yuqian. Carbon coating, UV irradiation modification of lithium titanate and their electrochemical properties[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 71-78. doi: 10.7513/j.issn.1004-7638.2024.03.010

钛酸锂的碳包覆、紫外辐照改性及电化学性能研究

doi: 10.7513/j.issn.1004-7638.2024.03.010
基金项目: 四川省自然科学基金(2022NSFSC0255);攀枝花市指导性科技计划项目(编号:2021ZD-G-7);钒钛资源综合利用四川省重点实验室项目(2021FTSZ17)。
详细信息
    作者简介:

    武传宝,1986年出生,男,黑龙江宝清人,博士,长期从事钒钛类新能源材料的研究工作,E-mail:wuchuanbao015@163.com

  • 中图分类号: TF823,TM912

Carbon coating, UV irradiation modification of lithium titanate and their electrochemical properties

  • 摘要: 钛酸锂(LTO)因其结构的“零应变”特性,成为重要的锂离子电池负极材料。然而,钛酸锂较低的电子电导率限制了其高倍率性能。提出一种光辅助的溶胶-凝胶法,制备了LTO/C负极材料,研究了不同碳源比例和光辐照对LTO/C显微结构和电化学性能的影响。与蔗糖为碳源包覆结果相比,葡萄糖为碳源时由于LTO表面包覆的碳石墨化程度更高,其倍率性能更优。在紫外辐照条件下,由于LTO/C粒径的减小,使得紫外辐照后的LTO/C在不同倍率下的放电比容量均高于无紫外辐照的LTO/C放电比容量。在10 C放电倍率下,20%葡萄糖为碳源辅以紫外照射工艺制备的LTO/C样品放电比容量达到101.5 mAh/g。
  • 图  1  以不同比例葡萄糖为碳源制得LTO/C的(a)XRD谱和(b)粉体颜色变化

    Figure  1.  (a) XRD and (b) color change of LTO/C prepared with different-proportions glucose as carbon source

    图  2  以不同比例蔗糖为碳源制得LTO/C的(a)XRD谱和(b)粉体颜色变化

    Figure  2.  (a) XRD and (b) color change of LTO/C prepared with different-proportions of sucrose as carbon source

    图  3  紫外辐照条件下20%葡萄糖/蔗糖为碳源制得LTO/C的(a)XRD谱和(b)粉体颜色变化

    Figure  3.  (a) XRD and (b) color change of LTO/C prepared with 20% glucose/sucrose as carbon source under ultraviolet irradiation

    图  4  有无紫外辐照条件下20%葡萄糖为碳源制得LTO/C的SEM形貌和粒径分布

    (a) LTO-P; (b) UV-LTO-P; (c) LTO-P的粒径分布; (d) UV-LTO-P的粒径分布

    Figure  4.  SEM and histogram of particle size distribution of LTO/C prepared with 20% glucose as carbon source with or without ultraviolet rradiation

    图  5  有无紫外辐照条件下20%蔗糖为碳源制得LTO/C的SEM形貌和粒径分布

    (a) LTO-Z; (b) UV-LTO-Z; (c) LTO-Z的粒径分布; (d) UV-LTO-Z的粒径分布

    Figure  5.  SEM and histogram of particle size distribution of LTO/C prepared with 20% sucrose as carbon source with or without ultraviolet irradiation

    图  6  有无紫外辐照条件下20%葡萄糖/蔗糖为碳源制得LTO/C的拉曼光谱

    Figure  6.  Raman spectra of LTO/C prepared with 20% glucose/sucrose as carbon source with or without ultraviolet irradiation

    (a) LTO-P; (b) UV-LTO- P; (c) LTO-Z; (d) UV-LTO-Z

    图  7  有无紫外辐照条件下20%葡萄糖/蔗糖为碳源制得LTO/C的充放电曲线

    Figure  7.  Charge-discharge curves of LTO/C prepared with 20% glucose/sucrose as carbon source with or without ultraviolet irradiation

    (a) LTO-P; (b) LTO-Z; (c) UV-LTO- P; (d) UV-LTO-Z

    图  8  有无紫外辐照条件下20%葡萄糖/蔗糖为碳源制得LTO/C的倍率性能

    (a) LTO-P和LTO-Z;(b) UV-LTO- P和UV-LTO- Z

    Figure  8.  Rate performances of LTO/C prepared with 20% glucose/sucrose as carbon source with or without ultraviolet irradiation

    图  9  紫外辐照条件下20%葡萄糖/蔗糖为碳源制得的LTO/C在5C倍率下的循环性能和库伦效率

    Figure  9.  Cycling performance and coulombic efficiency of LTO/C prepared with 20% glucose/sucrose as carbon source under ultraviolet irradiation at 5C

  • [1] Ding Xuqiang, Tao Qi, Luo Ying. Design and application of lithium-ion batteries in new energy vehicles[J]. Energy Storage Science and Technology, 2023,12(5):1751−1752. (丁徐强, 陶琦, 罗鹰. 锂离子电池在新能源汽车中的设计及应用[J]. 储能科学与技术, 2023,12(5):1751−1752.

    Ding Xuqiang, Tao Qi, Luo Ying. Design and application of lithium-ion batteries in new energy vehicles[J]. Energy Storage Science and Technology, 2023, 12(5): 1751−1752.
    [2] Zhang Lu. Study on preparation、modification and electrochemical performance of lithium titanate anode materials[D]. Guiyang:Guizhou University, 2021. (张露. 钛酸锂负极材料的制备、改性及其电化学性能的研究[D]. 贵阳:贵州大学, 2021.

    Zhang Lu. Study on preparation、modification and electrochemical performance of lithium titanate anode materials[D]. Guiyang:Guizhou University, 2021.
    [3] Shi Qisen, Yan Xixi, Wu Minchan, et al. Research progress on modification of graphite anode materials for lithium-ion batteries[J]. Chinese Journal of Power Sources, 2023,47(7):838−843. (史淇森, 燕溪溪, 吴敏昌, 等. 锂离子电池石墨负极材料改性研究进展[J]. 电源技术, 2023,47(7):838−843. doi: 10.3969/j.issn.1002-087X.2023.07.003

    Shi Qisen, Yan Xixi, Wu Minchan, et al. Research progress on modification of graphite anode materials for lithium-ion batteries[J]. Chinese Journal of Power Sources, 2023, 47(7): 838−843. doi: 10.3969/j.issn.1002-087X.2023.07.003
    [4] Li Wenrui. Modification and electrochemical properties of lithium titanate anode material for Lithium-ion battery[D]. Guangzhou:Guangdong University of Technology, 2022. (李文睿. 锂离子电池钛酸锂负极材料的改性及其电化学性能研究[D]. 广州:广东工业大学, 2022.

    Li Wenrui. Modification and electrochemical properties of lithium titanate anode material for Lithium-ion battery[D]. Guangzhou:Guangdong University of Technology, 2022.
    [5] Li Wang, Liu Jiali, Zhou Lan. Dynamic and frontier of modifications of Li4Ti5O12 anode material[J]. Iron Steel Vanadium Titanium, 2018,39(4):11−16. (李旺, 刘佳丽, 周兰. 国内外钛酸锂负极材料改性研究动态与前沿[J]. 钢铁钒钛, 2018,39(4):11−16. doi: 10.7513/j.issn.1004-7638.2018.04.002

    Li Wang, Liu Jiali, Zhou Lan. Dynamic and frontier of modifications of Li4Ti5O12 anode material[J]. Iron Steel Vanadium Titanium, 2018, 39(4): 11−16. doi: 10.7513/j.issn.1004-7638.2018.04.002
    [6] Wei Guodong. Effect of surface modification on the electrochemical properties of Li4Ti5O12 as anode material for lithium-ion batteries[D]. Shanghai:Shanghai Jiao Tong University, 2017. (魏国栋. 表面改性对锂离子电池负极材料钛酸锂电化学性能的影响[D]. 上海:上海交通大学, 2017.

    Wei Guodong. Effect of surface modification on the electrochemical properties of Li4Ti5O12 as anode material for lithium-ion batteries[D]. Shanghai:Shanghai Jiao Tong University, 2017.
    [7] Liao Xiongwei, Zheng Shilin, Duan Junfei, et al. Preparation and properties of high-magnification nanocrystalline lithium titanate anode materials for lithium-ion batteries[J]. Materials Science, 2020,10(5):380−390. (廖雄威, 郑世林, 段军飞, 等. 锂离子电池高倍率纳米晶钛酸锂负极材料的制备及性能研究[J]. 材料科学, 2020,10(5):380−390.

    Liao Xiongwei, Zheng Shilin, Duan Junfei, et al. Preparation and properties of high-magnification nanocrystalline lithium titanate anode materials for lithium-ion batteries[J]. Materials Science, 2020, 10(5): 380−390.
    [8] Xu H, Hu X, Sun Y, et al. Highly porous Li4Ti5O12/C nanofibers for ultrafast electrochemical energy storage[J]. Nano Energy, 2014,10:163−171.
    [9] Xun Rui. Synthesis and polyaniline capping modification of Li2ZnTi3O8, an anode material for lithium-ion batteries[D]. Fushun:Liaoning Shihua University, 2021. (荀瑞. 锂离子电池负极材料Li2ZnTi3O8的合成及聚苯胺包覆改性[D].抚顺: 辽宁石油化工大学, 2021.

    Xun Rui. Synthesis and polyaniline capping modification of Li2ZnTi3O8, an anode material for lithium-ion batteries[D]. Fushun:Liaoning Shihua University, 2021.
    [10] Fang Rongyu, Zhu Guisheng, Xu Huarui, et al. Microwave solid-phase synthesis of nano-lithium titanate powder and its properties[J]. Journal of Functional Materials, 2021,52(08):8112−8117. (方荣宇, 朱归胜, 徐华蕊, 等. 微波固相合成纳米钛酸锂粉体及其性能研究[J]. 功能材料, 2021,52(08):8112−8117. doi: 10.3969/j.issn.1001-9731.2021.08.015

    Fang Rongyu, Zhu Guisheng, Xu Huarui, et al. Microwave solid-phase synthesis of nano-lithium titanate powder and its properties[J]. Journal of Functional Materials, 2021, 52(08): 8112−8117. doi: 10.3969/j.issn.1001-9731.2021.08.015
    [11] Feng Yanhua, Zhang Xiangxin, Lin Changxin, et al. Hydrothermal synthesis of nanosheet lithium titanate and its properties[J]. Electronic Components & Materials, 2020,39(11):33−39. (冯言华, 张祥昕, 林长新, 等. 水热法合成纳米片状钛酸锂及其性能研究[J]. 电子元件与材料, 2020,39(11):33−39.

    Feng Yanhua, Zhang Xiangxin, Lin Changxin, et al. Hydrothermal synthesis of nanosheet lithium titanate and its properties[J]. Electronic Components & Materials, 2020, 39(11): 33−39.
    [12] Hu W, Zou L, Chen X, et al. Highly uniform resistive switching properties of amorphous InGaZnO thin films prepared by a low temperature photochemical solution deposition method[J]. ACS Appl. Mater. Inter. ,2014,6 (7) : 5012–5017.
    [13] Chen Y, Bian W, Huang W, et al. High critical current density of YBa2Cu307-x superconducting films prepared through a DUV-assisted solution deposition process[J]. Sci. Rep.,2016,6:38257.
    [14] Zywitzki D,Jing H,Tüysüz H, et al. High surface area, amorphous titania with reactive Ti3+ through a photo-assisted synthesis method for photocatalytic H2 generation[J]. J. Mater. Chem. A, 2017,5 (22): 10957–10967.
    [15] Yun B, Bui T T, Lee P, et al. Photo-assisted low temperature crystallization of solution-derived LiCoO2 thin film[J]. Mater. Res. Bull. ,2021,138:111241.
    [16] Wu C B, Wang Y W, Ma G Q, et al. Enhanced rate capability of Li4Ti5O12 anode material by a photo-assisted sol–gel route for lithium-ion batteries[J]. Electrochemistry Communications, 2021,131:3−5.
    [17] Guo Xin. Preparation and carbon-coating of Li4Ti5O12 as high-rate anode materials for lithium-ion batteries[D]. Hefei:Hefei University of Technology, 2014. (郭鑫. 高倍率Li4Ti5O12负极材料的制备及碳包覆研究[D]. 合肥:合肥工业大学, 2014.

    Guo Xin. Preparation and carbon-coating of Li4Ti5O12 as high-rate anode materials for lithium-ion batteries[D]. Hefei:Hefei University of Technology, 2014.
    [18] Xue Bing. Co-modification and electrochemical performance evaluation of Li4Ti5O12/C materials[D]. Dalian University of Technology, 2020. (薛冰. Li4Ti5O12/C材料复合改性及电化学性能评价[D]. 大连:大连理工大学, 2020.

    Xue Bing. Co-modification and electrochemical performance evaluation of Li4Ti5O12/C materials[D]. Dalian University of Technology, 2020.
    [19] Qian Delai. Preparation and electrochemical properties of lithium titanate as anode material for lithium-ion batteries[D]. Qingdao: Shandong University of Science and Technology, 2019. (钱德来. 锂离子电池负极材料钛酸锂的制备及其电化学性能研究[D]. 青岛: 山东科技大学, 2019.

    Qian Delai. Preparation and electrochemical properties of lithium titanate as anode material for lithium-ion batteries[D]. Qingdao: Shandong University of Science and Technology, 2019.
    [20] Zhang Lihui, Xu Yuxing, Liu Zhenfa, et al. Synthesis and electrochemical properties of Li4Ti5O12/graphene composite as an anode material for Li-ion batteries[J]. Chemical Industry and Engineering Progress, 2019,38(2):949−955. (张利辉, 徐宇兴, 刘振法, 等. 钛酸锂/石墨烯复合负极材料的制备及电化学性能[J]. 化工进展, 2019,38(2):949−955.

    Zhang Lihui, Xu Yuxing, Liu Zhenfa, et al. Synthesis and electrochemical properties of Li4Ti5O12/graphene composite as an anode material for Li-ion batteries[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 949−955.
  • 加载中
图(9)
计量
  • 文章访问数:  213
  • HTML全文浏览量:  69
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-05
  • 刊出日期:  2024-07-02

目录

    /

    返回文章
    返回