中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光熔化沉积TiAl合金微观组织和磨损性能研究

王海江 刘占起 梁健慧 尹桂丽 朱晓欧

王海江, 刘占起, 梁健慧, 尹桂丽, 朱晓欧. 激光熔化沉积TiAl合金微观组织和磨损性能研究[J]. 钢铁钒钛, 2024, 45(3): 86-91. doi: 10.7513/j.issn.1004-7638.2024.03.012
引用本文: 王海江, 刘占起, 梁健慧, 尹桂丽, 朱晓欧. 激光熔化沉积TiAl合金微观组织和磨损性能研究[J]. 钢铁钒钛, 2024, 45(3): 86-91. doi: 10.7513/j.issn.1004-7638.2024.03.012
Wang Haijiang, Liu Zhanqi, Liang Jianhui, Yin Guili, Zhu Xiaoou. Study on microstructure and wear properties of TiAl alloy deposited by laser melting[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 86-91. doi: 10.7513/j.issn.1004-7638.2024.03.012
Citation: Wang Haijiang, Liu Zhanqi, Liang Jianhui, Yin Guili, Zhu Xiaoou. Study on microstructure and wear properties of TiAl alloy deposited by laser melting[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 86-91. doi: 10.7513/j.issn.1004-7638.2024.03.012

激光熔化沉积TiAl合金微观组织和磨损性能研究

doi: 10.7513/j.issn.1004-7638.2024.03.012
基金项目: 辽宁省博士科研启动项目(编号:2023-BS-195);辽宁省教育厅基本科研项目(编号:LJKMZ20220960)。
详细信息
    作者简介:

    王海江,1999年出生,男,山东烟台人,硕士研究生,主要研究方向为激光增材制造技术,E-mail:ww1510545@163.com

    通讯作者:

    刘占起,1990年出生,男,辽宁朝阳人,博士,讲师,主要研究方向为激光增材制造技术,E-mail:zhanqiliu1990@126.com

  • 中图分类号: TF823

Study on microstructure and wear properties of TiAl alloy deposited by laser melting

  • 摘要: 采用激光同轴送粉沉积制造工艺在TC4基板上分别制备了一层、三层和五层的Ti-48Al-2Cr-2Nb合金样品。利用光学显微镜(OM)、扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射(XRD)分析了沉积层的显微组织、裂纹形貌、磨损面形貌、相组成。试验结果表明,沉积一层的样品表面裂纹数量较少,沉积三层和五层的样品表面裂纹较多且裂纹数量相差不大。随着沉积层数的增加,沉积层中的显微组织结构由网篮组织向片层组织过渡,组织中相的变化是由单相α2→α2+γ双相转变。随着α2相含量的降低,耐磨性能随之降低,平均摩擦系数由0.34增加到0.55。
  • 图  1  基板和沉积层的XRD分析

    Figure  1.  XRD analysis of substrate and deposited layers

    图  2  从基板到第五层沉积层线扫描结果

    Figure  2.  Line scanning results from the substrate to the fifth deposited layer

    图  3  沉积层的外观形貌和渗透检测结果

    (a)第一层外观形貌;(b)第三层外观形貌;(c)第五层外观形貌;(d)第一层渗透结果;(e)第三层渗透结果;(f)第五层渗透结果

    Figure  3.  Appearance and permeability test results of deposition layers

    图  4  沉积层的光学组织形貌

    (a)基板组织;(b)第一层组织;(c)第二层组织;(d)第三层组织;(e)第四层组织;(f)第五层组织

    Figure  4.  Optical Morphology of deposited layers

    图  5  沉积层的裂纹形貌

    (a)宏观形貌;(b)顶部;(c)中部;(d)底部

    Figure  5.  Crack morphology of deposition layers

    图  6  裂纹的断口形貌

    (a)顶部;(b)中部;(c)底部

    Figure  6.  Fracture morphology of crack

    图  7  不同沉积层磨损后的外观形貌

    (a)基板;(b)第一层;(c)第三层;(d)第五层

    Figure  7.  Appearance and morphology of different deposited layers after wear

    表  1  Ti-48Al-2Cr-2Nb合金粉末的化学成分

    Table  1.   1 Chemical composition of Ti-48Al-2Cr-2Nb alloy powder %

    TiAlCrNbON
    Bal.32.52.644.620.060.005
    下载: 导出CSV
  • [1] Wang Haifeng, Zhang Zhiming, Niu Yunsong, et al. Effect of pre-oxidation on microstructure and wear resistance of titanium alloy by low temperature plasma oxynitriding[J/OL]. Acta Metallurgica Sinica, 1-11[2023-03-19]. (王海峰, 张志明, 牛云松,等. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J/OL]. 金属学报, 1-11[2023-03-19].

    Wang Haifeng, Zhang Zhiming, Niu Yunsong, et al. Effect of pre-oxidation on microstructure and wear resistance of titanium alloy by low temperature plasma oxynitriding[J/OL]. Acta Metallurgica Sinica, 1-11[2023-03-19].
    [2] Espejo H M, Bahr D F. Substrate cracking in Ti-6Al-4V driven by pulsed laser irradiation and oxidation[J]. Surface & Coatings Technology, 2017,322:46−50.
    [3] Aditya Kumar, Abhishek Choudhary, Abhishek Choudhary, et al. An investigation on wear characteristics of additive manufacturing materials[J]. Materials Today: Proceedings, 2021,47:3654−3660. doi: 10.1016/j.matpr.2021.01.263
    [4] Emiraliolu A, Nal R. Additive manufacturing of gamma titanium aluminide alloys: A review[J]. Journal of Materials Science, 2022,57(4):1−26.
    [5] Xu C, Zhou Q, Xue W, et al. Surface protection of a V-4Cr-4Ti alloy through a multilayered TiAl/TiAlN composite coating[J]. Vacuum, 2023,207:111595.
    [6] Guo Jiaming, Liang Jinglong, Li Hui, et al. Research progress on preparation technology of titanium aluminum alloy and its intermetallic compounds[J]. Multipurpose Utilization of Mineral Resources, 2022(3):1−5. (郭佳明, 梁精龙, 李慧, 等. 钛铝合金及其金属间化合物制备工艺研究进展[J]. 矿产综合利用, 2022(3):1−5.

    Guo Jiaming, Liang Jinglong, Li Hui, et al. Research progress on preparation technology of titanium aluminum alloy and its intermetallic compounds[J]. Multipurpose Utilization of Mineral Resources, 2022(3): 1−5.
    [7] Zheng R T, Zhang Y G, Chen C Q. The ambient temperature tensile behavior of duplex γ-TiAl-based alloys[J]. Materials Science & Engineering A, 2003,362(1/2):192−199.
    [8] Kong B, Wang S, Zhang M, et al. Atomic-scale investigation on fretting wear mechanism of γ phase in a cast Ti-45Al alloy[J]. Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials, 2021,565(1):1−20.
    [9] Chen Y, Wang H M. Microstructure and high-temperature wear resistance of a laser surface alloyed γ-TiAl with carbon[J]. Applied Surface Science, 2003,220(1):186−192.
    [10] Li W, Zhu S, Chen M, et al. Development of an oxidation resistant glass-ceramic composite coating on Ti-47Al-2Cr-2Nb alloy[J]. Applied Surface Science, 2014,292(15):583−590.
    [11] Abboud J H, Fidel A F, Benyounis K Y. Surface nitriding of Ti–6Al–4V alloy with a high power CO2 laser[J]. Optics & Laser Technology, 2008,40(2):405−414.
    [12] Zhang Jun, Cai Xiaolong, Gao Siyang, et al. Study on fretting wear resistance of brazed WC wear resistant layer on TC4 titanium alloy[J]. Electric Welding Machine, 2023,53(1):56−62. (张军, 蔡晓龙, 高禩洋, 等. TC4钛合金表面钎焊WC耐磨层的微动磨损性能研究[J]. 电焊机, 2023,53(1):56−62.

    Zhang Jun, Cai Xiaolong, Gao Siyang, et al. Study on fretting wear resistance of brazed WC wear resistant layer on TC4 titanium alloy[J]. Electric Welding Machine, 2023, 53(1): 56−62.
    [13] Li J, Chen C, Squartini T, et al. A study on wear resistance and microcrack of the Ti3Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti-6Al-4V alloy[J]. Appl. Surf. Sci, 2010,257:1550–1555.
    [14] Cheng Liang, Zhang Shuaijin, Yang Guang, et al. Tailoring microstructure and mechanical performance of a β-solidifying TiAl alloy via martensitic transformation[J]. Materials Characterization, 2021, 173(1):110970.
    [15] Pang W. Tribological coating of titanium alloys by laser processing[D]. Hongkong :Hongkong Polytechnic University, 2010.
    [16] Ramesh S, Nayaka H S. Effect of multiaxial cryoforging on wear properties of Cu-1.5%Ti alloy[C]// Materials Science Forum. Trans Tech Publications Ltd, 2019.
    [17] Zheng Bowen, Dong Fuyu, Zhang Yue, et al. Effects of TiC volume fraction on the microstructure and friction properties of in-situ titanium matrix composites[J]. Special Casting & Nonferrous Alloys, 2018,38(7):705−708. (郑博文, 董福宇, 张悦, 等. TiC含量对原位钛基复合材料组织与摩擦性能的影响[J]. 特种铸造及有色合金, 2018,38(7):705−708.

    Zheng Bowen, Dong Fuyu, Zhang Yue, et al. Effects of TiC volume fraction on the microstructure and friction properties of in-situ titanium matrix composites[J]. Special Casting & Nonferrous Alloys, 2018, 38(7): 705−708.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  78
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-21
  • 刊出日期:  2024-07-02

目录

    /

    返回文章
    返回