留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冶炼钒钛矿高炉操作炉型计算模拟研究

董晓森 饶家庭 郑魁

董晓森, 饶家庭, 郑魁. 冶炼钒钛矿高炉操作炉型计算模拟研究[J]. 钢铁钒钛, 2024, 45(3): 121-130, 154. doi: 10.7513/j.issn.1004-7638.2024.03.017
引用本文: 董晓森, 饶家庭, 郑魁. 冶炼钒钛矿高炉操作炉型计算模拟研究[J]. 钢铁钒钛, 2024, 45(3): 121-130, 154. doi: 10.7513/j.issn.1004-7638.2024.03.017
Dong Xiaosen, Rao Jiating, Zheng Kui. Simulation of operation inner profile of blast furnace with smelting vanadium-titanium magnetite[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 121-130, 154. doi: 10.7513/j.issn.1004-7638.2024.03.017
Citation: Dong Xiaosen, Rao Jiating, Zheng Kui. Simulation of operation inner profile of blast furnace with smelting vanadium-titanium magnetite[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 121-130, 154. doi: 10.7513/j.issn.1004-7638.2024.03.017

冶炼钒钛矿高炉操作炉型计算模拟研究

doi: 10.7513/j.issn.1004-7638.2024.03.017
详细信息
    作者简介:

    董晓森,1993年出生,男,河北石家庄人,硕士研究生,工程师,长期从事钢铁冶金研究工作,E-mail:xiaosendong@163.com

  • 中图分类号: TF512

Simulation of operation inner profile of blast furnace with smelting vanadium-titanium magnetite

  • 摘要: 根据某钒钛磁铁矿冶炼高炉炉型设计参数和生产工况数据,通过MATLAB计算软件建立该高炉操作炉型计算模型,研究高炉运行中高温区域炉墙挂渣情况。计算结果表明:受高炉边缘气流控制较弱影响,高温区域炉墙的热负荷大多在12 kW/(m2·s)以下,冷却壁壁体温度接近炉壳温度,冷却壁热面的渣皮厚度普遍高于100 mm,且渣皮厚度分布不均匀,个别方向达到200 mm以上;对比普通高炉,冶炼钒钛磁铁矿高炉在同等热负荷下,高温区域挂渣能力更强,从安全性与渣皮稳定性考虑,高炉冷却壁热负荷应控制在10.50~34.50 kW/(m2·s)。
  • 图  1  模型基本结构剖面

    Figure  1.  The basic structure section of the model

    图  2  炉墙传热结构

    Figure  2.  Heat transfer structure of furnace wall

    图  3  模型求解流程

    Figure  3.  Model solution flow chart

    图  4  渣皮厚度与炉墙热流强度(热负荷)对应关系

    Figure  4.  Correspondence between thickness of slag skull and heat flow intensity (heat load) of furnace wall

    (a) 钒钛高炉; (b) 普通高妒[9]

    图  5  截面位置选取分布

    Figure  5.  Distribution map of cross-section location selection

    图  7  不同高度冷却壁的渣皮分布

    Figure  7.  The slag skin distribution of different heights of cooling stave

    图  6  操作炉型计算结果(圆周方向)

    Figure  6.  The slag skull distribution on cooling stave with different heights

    图  8  计算模型运行结果及设计内型

    Figure  8.  (a)Calculation results and (b)design profile from developed model

    图  9  不同风口垂直截面高度方向的操作炉型

    Figure  9.  Operating furnace types in the direction of the vertical section height of different tuyere

    图  10  不同炉况下冷却壁内热电偶温度与渣皮厚度关系

    Figure  10.  Relationship between temperature of the thermocouple on the cooling stave and slag skull thickness under different furnace conditions

    图  11  水温差与渣皮厚度关系

    Figure  11.  Relationship between water temperature difference and slag skull thickness

    图  12  冷却壁热负荷与渣皮厚度关系

    Figure  12.  Relationship between the thermal load of the cooling stave and slag skull thickness

    表  1  炉墙设计参数

    Table  1.   The design parameters of furnace wall

    炉壳厚度/mm填料层厚度/mm冷却壁厚度/mm冷却壁高度/mm冷却壁总数量/块水管尺寸/mm
    B1B2B3S1
    45402801540140021601 99542×4Φ45×6
    肋台厚度
    /mm
    镶砖厚度
    /mm
    炉腰设计內型半径
    /mm
    冷却壁热面总面积/m2炉身角/(°)炉腹角/(°)
    B1B2B3S1
    80180540054.651.280.27383.051379.765 2
    下载: 导出CSV

    表  2  高炉B1~S1段冷却系统和炉壳实测数据

    Table  2.   Measured data of cooling system and furnace shell of B1~S1 section of blast furnace

    水流量均值/
    (t·h−1)
    水温差
    均值/ ℃
    炉壳温度
    均值/ ℃
    环境温度
    均值/ ℃
    2.572.0643.4221.00
    下载: 导出CSV

    表  3  模型部分计算参数

    Table  3.   Some calculation parameters of the model

    铸铁冷却壁导热
    系数/[W·(m·℃)−1]
    镶砖导热
    系数/[W·(m·℃)−1]
    渣皮导热
    系数/[W·(m·℃)−1]
    热电偶插入
    深度/mm
    不同温度下铁的导热系数/[W·(m·℃)−1]
    400 ℃600 ℃800 ℃1000 ℃1200 ℃
    42.05-0.026 89t17-0.009t1.240549.938.629.329.331.1
    注:t为材料温度值, ℃。
    下载: 导出CSV
  • [1] Lin Chengcheng, Xiang Zhongyong. Characteristics of baosteel blast furnace profiles and their effects on operation[J]. Baosteel Technology, 2009,(2):49-53. (林成城, 项钟庸. 宝钢高炉炉型特点及其对操作的影响[J]. 宝钢技术, 2009,(2):49-53.

    Lin Chengcheng, Xiang Zhongyong. Characteristics of baosteel blast furnace profiles and their effects on operation[J]. Baosteel Technology, 2009(2): 49.
    [2] Chen Lingkun, Wang Yong, Fu Lianchun. Application of the balst furnace expert system to profile management on No. 4 BF at WISGCO[J]. Iron & Steel, 2000,35(9):5-9. (陈令坤, 汪勇, 付连春. 高炉冶炼专家系统在炉型管理中的应用[J]. 钢铁, 2000,35(9):5-9.

    Chen Lingkun, Wang Yong, Fu Lianchun. Application of the balst furnace expert system to profile management on No. 4 BF at WISGCO[J]. Iron & Steel, 2000, 35(9): 5.
    [3] Chen Peidun, Shao Shudong, Xue Yuqing. On furnace shape management and smooth work of furnace status of BF operation[J]. China Metallurgy, 2006,16(3):48-49. (陈培敦, 邵书东, 薛玉卿. 浅谈高炉操作炉型管理与炉况顺行[J]. 中国冶金, 2006,16(3):48-49.

    Chen Peidun, Shao Shudong, Xue Yuqing. On furnace shape management and smooth work of furnace status of BF operation[J]. China Metallurgy, 2006, 16(3): 48.
    [4] Shi Lin, Cheng Susen, Zuo Haibin. Numerical simulation of erosion boundary identification of blast furnace lining[J]. Journal of Iron and Steel Research, 2006,18(4):1-5. (石琳, 程素森, 左海滨. 高炉炉衬侵蚀边界识别的数值模拟[J]. 钢铁研究学报, 2006,18(4):1-5.

    Shi Lin, Cheng Susen, Zuo Haibin. Numerical simulation of erosion boundary identification of blast furnace lining [J]. Journal of Iron and Steel Research, 2006, 18(4): 1.
    [5] Li Junfeng, He Chuanyun, Ding Yuehua. Study on heat transfer and slag skull thickness in bosh and belly of blast furnace[J]. Research on Iron and Steel, 2014,42(6):12−15. (李骏峰, 何川云, 丁跃华. 高炉炉腹炉腰传热及渣皮厚度的研究[J]. 钢铁研究, 2014,42(6):12−15.

    Li Junfeng, He Chuanyun, Ding Yuehua. Study on heat transfer and slag skull thickness in bosh and belly of blast furnace[J]. Research on Iron and Steel, 2014, 42(6): 12-15.
    [6] Chen Zeshao, Qian Jun, Ye Yihuo. Predicting theory of effective thermal conductivity of complex material[J]. Journal of China University of Science and Technology, 1992,22(4):416−424. (陈则韶, 钱军, 叶一火. 复合材料等效导热系数的理论推算[J]. 中国科学技术大学学报, 1992,22(4):416−424.

    Chen Zeshao, Qian Jun, Ye Yihuo. Predicting theory of effective thermal conductivity of complex material[J]. Journal of China University of Science and Technology, 1992, 22(4): 416-424.
    [7] Zhang Feng, Xiao Jianzhuang, Song Zhiwen. The prediction models of thermal conductivity of concrete and their application[J]. Ready-Mixed Concrete, 2009,(2):23-25,51. (张枫, 肖建庄, 宋志文. 混凝土导热系数的理论模型及其应用[J]. 商品混凝土, 2009,(2):23-25,51.

    Zhang Feng, Xiao Jianzhuang, Song Zhiwen. The prediction models of thermal conductivity of concrete and their application[J]. Ready-Mixed Concrete, 2009(2): 23.
    [8] Ji Xiulan, Liu Zengxun, Lü Qing. Analysis on slag skull on bf copper cooling stave for vanadium-bearing titaniferous magnetite smelting[J]. Iron Steel Vanadium Titanium, 2012,33(1):65−69. (计秀兰, 刘增勋, 吕庆. 冶炼钒钛磁铁矿高炉的铜冷却壁挂渣分析[J]. 钢铁钒钛, 2012,33(1):65−69.

    Ji Xiulan, Liu Zengxun, Lv Qing. Analysis on slag skull on bf copper cooling stave for vanadium-bearing titaniferous magnetite smelting[J]. Iron Steel Vanadium Titanium, 2012, 33(1): 65-69.
    [9] Liu Zengxun, Lü Qing. Heat transfer analysis for slag skull thickness of blast furnace[J]. Iron Steel Vanadium Titanium, 2008,29(3):55−58. (刘增勋, 吕庆. 高炉渣皮厚度的传热分析[J]. 钢铁钒钛, 2008,29(3):55−58.

    Liu Zengxun, Lv Qing. Heat transfer analysis for slag skull thickness of blast furnace[J]. Iron Steel Vanadium Titanium, 2008, 29(3): 55-58.
    [10] Cao Yingjie, Zhang Jianliang, Guo Hongwei. Calculation of blast furnace inner wall thickness[J]. Journal of Iron and Steel Research, 2015,(1):7−11. (曹英杰, 张建良, 国宏伟. 高炉炉墙内型厚度的计算[J]. 钢铁研究学报, 2015,(1):7−11.

    Cao Yingjie, Zhang Jianliang, Guo Hongwei. Calculation of blast furnace inner wall thickness[J]. Journal of Iron and Steel Research, 2015(1): 7-11.
    [11] 刘增勋. 高炉冷却壁热力耦合分析[D]. 沈阳: 东北大学, 2009.

    Liu Zengxun. Coupled thermos-mechanical analysis about blast furnace staves[D]. Shenyang: Northeastern University, 2009.
    [12] Cheng Susen, Qian Liang, Zhao Hongbo. Monitoring method for blast furnace wall with copper staves[J]. Journal of Iron and Steel Research, International, 2007,14(4):1−5.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  24
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-28
  • 刊出日期:  2024-07-02

目录

    /

    返回文章
    返回