中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

20CrMnTiH齿轮钢中非金属夹杂物演变行为

王章印 陈亮 陈雄 李平凡

王章印, 陈亮, 陈雄, 李平凡. 20CrMnTiH齿轮钢中非金属夹杂物演变行为[J]. 钢铁钒钛, 2024, 45(3): 155-161. doi: 10.7513/j.issn.1004-7638.2024.03.021
引用本文: 王章印, 陈亮, 陈雄, 李平凡. 20CrMnTiH齿轮钢中非金属夹杂物演变行为[J]. 钢铁钒钛, 2024, 45(3): 155-161. doi: 10.7513/j.issn.1004-7638.2024.03.021
Wang Zhangyin, Chen Liang, Chen Xiong, Li Pingfan. Formation and evolution of non-metallic inclusions in 20CrMnTiH gear steel during LF-RH-CC process[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 155-161. doi: 10.7513/j.issn.1004-7638.2024.03.021
Citation: Wang Zhangyin, Chen Liang, Chen Xiong, Li Pingfan. Formation and evolution of non-metallic inclusions in 20CrMnTiH gear steel during LF-RH-CC process[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 155-161. doi: 10.7513/j.issn.1004-7638.2024.03.021

20CrMnTiH齿轮钢中非金属夹杂物演变行为

doi: 10.7513/j.issn.1004-7638.2024.03.021
详细信息
    作者简介:

    王章印,1997年出生,男,四川宜宾人,硕士研究生,工程师,主要从事特殊钢冶金技术工艺、钢中非金属夹杂物控制与利用等研究工作,E-mail:553216926@qq.com

    通讯作者:

    陈亮,1983年出生,男,四川攀枝花人,博士,教授级高工,主要从事钢铁冶金技术工艺、钢中非金属夹杂物控制与利用、连铸工艺开发等研究工作,E-mail:47285271@qq.com

  • 中图分类号: TF704.7

Formation and evolution of non-metallic inclusions in 20CrMnTiH gear steel during LF-RH-CC process

  • 摘要: 通过工业试验分析了20CrMnTiH在精炼过程中非金属夹杂物的演变行为,并采用FactSage8.0热力学软件计算了20CrMnTiH在钙处理、二次氧化和冷却凝固过程中夹杂物的转变趋势。结果表明,LF精炼过程中夹杂物由Al2O3向MgO-Al2O3和CaO-MgO-Al2O3转变,经过钙处理后,夹杂物改性为CaO-MgO-Al2O3和CaO-Al2O3-CaS,随后经过RH真空精炼,在真空精炼结束时进行第二次钙处理,夹杂物转变为高CaS含量的CaO-Al2O3-CaS和CaO-MgO-Al2O3,连铸过程中钢液发生再氧化,夹杂物中CaS含量进一步升高。热力学计算表明,在钢液中加入0.003%~0.0005%的[Ca]时,钢液中会生成高熔点的MgO-Al2O3,当[Ca]的加入量在0.0005%~0.0007%时,夹杂物主要为液态夹杂物,当[Ca]含量大于0.0007%时,钢液中开始有CaS生成。此外,二次氧化的发生会使得钢液中的液态夹杂物更多地转变为固态夹杂物。随着温度的降低,夹杂物中CaO、CaS含量在逐渐降低,而MgO、Al2O3含量逐渐增加,最终形成高CaS含量的CaS-CaO-MgO-Al2O3
  • 图  1  精炼过程 T[O] 和 [N] 变化

    Figure  1.  Variation of mass percent of T[O] and [N] during refining processes

    图  2  精炼过程夹杂物的化学成分

    Figure  2.  Chemical compositions of inclusions at different stages of refining

    图  3  L2 时夹杂物转变分析

    Figure  3.  Phase transformation of inclusions in L2

    图  4  R2 时夹杂物转变分析

    Figure  4.  Phase transformation of inclusions in R2

    图  5  二次氧化对夹杂物的影响

    Figure  5.  Effect of secondary oxidation on inclusion

    图  6  钢液冷却凝固过程中夹杂物的转变

    Figure  6.  Calculated equilibrium state of inclusions at different temperatures

    图  7  仅考虑 CaS 析出的成分转变

    Figure  7.  Calculated equilibrium contents of inclusions considering only CaS precipitation at different temperatures

    表  1  精炼过程20CrMnTiH的主要化学成分

    Table  1.   Main chemical compositions of 20CrMnTiH during refining %

    节点CSiMnPSCrTi[Al][Ca][Mg]
    L10.130.130.890.0110.02451.110.0050.0240.0002
    L20.150.190.940.0110.01591.110.0730.05580.00180.0003
    R10.150.190.940.0110.01591.110.0730.05580.00180.0003
    R20.190.260.960.0110.0221.110.0750.0410.00050.0003
    R30.190.260.960.0110.0181.110.0660.0380.00180.0003
    T10.190.260.960.0110.0181.110.0660.0380.00180.0003
    T20.190.260.960.0110.0181.110.0660.0380.00180.0003
    T30.190.260.960.0110.0181.110.0660.0380.00180.0003
    下载: 导出CSV

    表  2  夹杂物的尺寸分布

    Table  2.   Size distribution of the inclusions

    节点占比/%
    1~2 μm2~5 μm5~10 μm10~20 μm>20 μm
    L172.1226.060.910.610.30
    L275.6819.822.251.350.90
    R173.0225.550.850.430.14
    R254.9038.245.230.980.65
    R371.8422.823.880.490.97
    T170.5326.392.960.110.00
    T267.3629.662.780.200.00
    T364.3931.943.500.170.00
    下载: 导出CSV
  • [1] Fuchs D, Tobie T, Stahl K. Challenges in determination of microscopic degree of cleanliness in ultra-clean gear steels[J]. Journal of Iron and Steel Research International, 2022,29(10):1583−1600. doi: 10.1007/s42243-021-00730-y
    [2] Juan R, Wang M, Li L, et al. Relationship between inclusions and internal defect spatial distribution in large forging piece for wind power generation gear[J]. ISIJ International, 2022,62(1):133−141. doi: 10.2355/isijinternational.ISIJINT-2021-356
    [3] Liu R, Sun D, Hou J, et al. Fatigue life analysis of wind turbine gear with oxide inclusion[J]. Fatigue Fracture of Engineering Materials Structures, 2021,44(3):776−787. doi: 10.1111/ffe.13393
    [4] Ji Sha, Zhang Lifeng, Luo Yan, et al. Effect of calcium treatment on nonmetallic inclusions in 20CrMnTiH gear steel[J]. Chinese Journal of Engineering, 2021,43(6):825−834. (季莎, 张立峰, 罗艳, 等. 钙处理对20CrMnTiH齿轮钢中非金属夹杂物的影响[J]. 工程科学学报, 2021,43(6):825−834.

    Ji Sha, Zhang Lifeng, Luo Yan, et al. Effect of calcium treatment on nonmetallic inclusions in 20 CrMnTiH gear steel [J]. Chinese Journal of Engineering, 2021, 43(6): 825-834.
    [5] Wang Kunpeng, Wang Ying, Xu Jianfei, et al. Investigation on evolution of inclusions in bearing steel during secondary refining[J]. Iron and Steel, 2022,57(6):42−49. (王昆鹏, 王郢, 徐建飞, 等. 轴承钢二次精炼过程夹杂物演变规律[J]. 钢铁, 2022,57(6):42−49. doi: 10.13228/j.boyuan.issn0449-749x.20210660

    Wang Kunpeng, Wang Ying, Xu Jianfei, et al. Investigation on evolution of inclusions in bearing steel during secondary refining [J]. Iron and Steel, 2022, 57 (6): 42-49. doi: 10.13228/j.boyuan.issn0449-749x.20210660
    [6] Yang Guang, Yang Wen, Zhang Lifeng. Calcium treatment modification and influencing factors of inclusions in aluminum-killed steel[J]. Iron and Steel, 2022,57(12):66−78. (杨光, 杨文, 张立峰. 铝镇静钢中夹杂物钙处理改性及其影响因素[J]. 钢铁, 2022,57(12):66−78. doi: 10.13228/j.boyuan.issn0449-749x.20220313

    Yang Guang, Yang Wen, Zhang Lifeng. Calcium treatment modification and influencing factors of inclusions in aluminum-killed steel [J]. Iron and Steel, 2022, 57(12): 66-78. doi: 10.13228/j.boyuan.issn0449-749x.20220313
    [7] Dieter Janke Z M, Peter V, Heinen A. Improvement of castability and quality of continuously cast steel[J]. ISIJ International, 2000,40(1):31−39. doi: 10.2355/isijinternational.40.31
    [8] Gollapalli V, Raomb V, Karmached P S, et al. Modification of oxide inclusions in calcium-treated Al-killed high sulphur steels[J]. Ironmaking & Steelmaking, 2019,46(7):663−670.
    [9] Pretorius E B, Oltman H G, Cash T. The effective modification of spinel inclusions by Ca treatment in LCAK steel[J]. Iron & Steel Technology, 2011,7(7):31−44.
    [10] Xu J, Huang F, Wang X. Formation mechanism of CaS-Al2O3 inclusions in low sulfur Al-killed steel after calcium treatment[J]. Metall. Mater. Trans. B, 2016,47(2):1217−1227. doi: 10.1007/s11663-016-0599-8
    [11] Choudhary S K, Ghosh A. Thermodynamic evaluation of formation of oxide–sulfide duplex inclusions in steel[J]. ISIJ International, 2008,48(11):1552−1559. doi: 10.2355/isijinternational.48.1552
    [12] Verma N, Pistorius P C, Fruehan R J, et al. Calcium modification of spinel inclusions in aluminum-killed steel: Reaction steps[J]. Metall. Mater. Trans. B, 2012,43(4):830−840. doi: 10.1007/s11663-012-9660-4
    [13] Xie Y, Meng X, Deng X, et al. Evolution of sulphide inclusion in Mg–Ca treating gear steel [J]. Ironmaking & Steelmaking, 2022: 1−7.
    [14] Xu G, Jiang Z, Li Y. Formation mechanism of CaS-bearing inclusions and the rolling deformation in Al-killed, low-alloy steel with Ca treatment[J]. Metall. Mater. Trans. B, 2016,47(4):2411−2420. doi: 10.1007/s11663-016-0695-9
    [15] Zhao D, Li H, Bao C, et al. Inclusion evolution during modification of alumina inclusions by calcium in liquid steel and deformation during hot rolling process[J]. ISIJ International, 2015,55(10):2115−2124. doi: 10.2355/isijinternational.ISIJINT-2015-064
    [16] Bielefeldt W V, Vilela A C F. Computational thermodynamic study of inclusions formation in the continuous casting of SAE 8620 steel[J]. Steel Research International, 2010,81(12):1064−1069. doi: 10.1002/srin.201000057
    [17] Ahmad H, Zhao B, Sha L, et al. Formation of complex inclusions in gear steels for modification of manganese sulphide[J]. Metals, 2021,11(12):2051−2064. doi: 10.3390/met11122051
    [18] Ren Y, Zhang L, Ling H, et al. A reaction model for prediction of inclusion evolution during reoxidation of Ca-treated Al-killed steels in tundish[J]. Metall. Mater. Trans. B, 2017,48(3):1−6.
    [19] Gao Shengya, Jiang Min, Hou Zewang, et al. Effect of calciumtreatment on non-metallic inclusions in high carbon aluminum killed steel(Article)[J]. Iron and Steel, 2017,52(4):25−30. (高胜亚, 姜敏, 侯泽旺, 等. 钙处理对高碳铝镇静钢中夹杂物的影响[J]. 钢铁, 2017,52(4):25−30. doi: 10.13228/j.boyuan.issn0449-749x.20160311

    Gao Shengya, Jiang Min, Hou Zewang, et al. Effect of calciumtreatment on non-metallic inclusions in high carbon aluminum killed steel(Article) [J]. Iron and Steel, 2017, 52(4): 25-30. doi: 10.13228/j.boyuan.issn0449-749x.20160311
    [20] Yang G, Wang X, Huang F, et al. Influence of calcium addition on inclusions in LCAK steel with ultralow sulfur content[J]. Metall. Mater. Trans. B, 2014,46(1):145−154.
    [21] Hou Z, Jiang M, Yang E, et al. Inclusion characterization in aluminum-deoxidized special steel with certain sulfur content under combined influences of slag refining, calcium treatment, and reoxidation[J]. ISIJ International, 2018,49(6):3056−3066.
    [22] Kim T S, Chung Y, Holappa L, et al. Effect of rice husk ash insulation powder on the reoxidation behavior of molten steel in continuous casting tundish[J]. Metall. Mater. Trans. B, 2017,48(3):1736−1747. doi: 10.1007/s11663-017-0971-3
    [23] Shi C, Zheng D, Guo B, et al. Evolution of oxide-sulfide complex inclusions and its correlation with steel cleanliness during electroslag rapid remelting (ESRR) of tool steel[J]. Metall. Mater. Trans. B, 2018,49(6):3390−3402. doi: 10.1007/s11663-018-1398-1
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  201
  • HTML全文浏览量:  79
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-17
  • 刊出日期:  2024-07-02

目录

    /

    返回文章
    返回