中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同工艺参数对电子束熔丝沉积304不锈钢力学性能及显微组织研究

黄星光 孙宝福

黄星光, 孙宝福. 不同工艺参数对电子束熔丝沉积304不锈钢力学性能及显微组织研究[J]. 钢铁钒钛, 2024, 45(3): 162-168. doi: 10.7513/j.issn.1004-7638.2024.03.022
引用本文: 黄星光, 孙宝福. 不同工艺参数对电子束熔丝沉积304不锈钢力学性能及显微组织研究[J]. 钢铁钒钛, 2024, 45(3): 162-168. doi: 10.7513/j.issn.1004-7638.2024.03.022
Huang Xingguang, Sun Baofu. Research on the influence of various process parameters on the properties of 304 stainless steel prototypes by electron beam free form fabrication[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 162-168. doi: 10.7513/j.issn.1004-7638.2024.03.022
Citation: Huang Xingguang, Sun Baofu. Research on the influence of various process parameters on the properties of 304 stainless steel prototypes by electron beam free form fabrication[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 162-168. doi: 10.7513/j.issn.1004-7638.2024.03.022

不同工艺参数对电子束熔丝沉积304不锈钢力学性能及显微组织研究

doi: 10.7513/j.issn.1004-7638.2024.03.022
基金项目: 广西创新驱动发展专项资金资助项目(桂科AA18242046)。
详细信息
    作者简介:

    黄星光,1999年出生,男,广西钦州人,硕士研究生,主要研究方向:电子束工艺,E-mail:1144329017@qq.com

    通讯作者:

    孙宝福,1970年出生,男,山东枣庄人,副教授,硕士生导师,主要研究方向:电子束工艺,E-mail:18593299591@163.com

  • 中图分类号: TF76,TG665

Research on the influence of various process parameters on the properties of 304 stainless steel prototypes by electron beam free form fabrication

  • 摘要: 采用直径为1 mm的304不锈钢丝材为材料,以电子束熔丝沉积技术(EBF3)制备304不锈钢试样,并进行力学性能及显微组织分析。设计了9组试验方案进行单因素试验,分别改变束流强度、送丝速度以及基板进给速度三个参数进行打印。结果表明,9组试件的抗拉强度和屈服强度均表现优异,但断后伸长率表现一般,其中当束流为26 mA、送丝速度为1400 mm/min、进给速度为400 mm/min时,试件各项特征表现最好,拉伸强度为1328.92 MPa,屈服强度为711.60 MPa,断后伸长率为34.45%。通过综合分析可知,改变送丝速度对试件的塑性影响最大,改变进给速度对试件的强度影响最大。此外,改变束流与进给速度的试件内部金相组织基体由奥氏体组成,改变送丝速度的试件显微组织则多为奥氏体转变和过程析出的组织为组成部分;改变束流和送丝速度的试件中以组织的构成变化为主,改变进给速度的试件中组织则以晶粒度的变化为主,最终形成了不同拉伸件性能间的差异。在进行扫描电镜断口分析中可以发现,试件在拉伸试验中均发生脆性断裂。
  • 图  1  304不锈钢母材金相组织

    Figure  1.  Microstructure of 304 stainless steel

    图  2  不同束流强度的304不锈钢金相组织

    Figure  2.  Metallographic analysis of 304 stainless steel formed by different beam intensity

    图  3  不同送丝速度的304不锈钢金相组织

    Figure  3.  Metallographic analysis of 304 stainless steel formed by different wire feeding speeds

    图  4  不同进给速度的304不锈钢金相组织

    Figure  4.  Metallographic analysis of 304 stainless steel formed by different feed rates

    图  5  不同参数试样的时间-应力曲线

    Figure  5.  Time-stress curves of specimens with different parameters

    (a)束流强度; (b)送丝速度; (c)进给速度

    图  6  不同束流强度下试样的拉伸断口微观形貌

    Figure  6.  Tensile fracture microscopic morphology of specimens formed by different beam strengths

    (a) 22 mA,低倍; (b) 22 mA,高倍; (c) 26 mA,低倍; (d) 26 mA,高倍

    图  7  不同送丝速度下试样的拉伸断口微观形貌

    Figure  7.  Tensile fracture microscopic morphology of specimens formed by different wire feeding speed

    (a) 1 200 mm/min, 低倍; (b) 1 200 mm/min, 高倍; (c) 1 500 mm/min, 低倍; (d) 1 500 mm/min, 高倍; (e) 1 800 mm/min, 低倍; (f) 1 800 mm/min, 高倍

    图  8  不同焊接速度下试样的拉伸断口微观形貌

    Figure  8.  Tensile fracture microscopic morphology of specimens formed by different feeding rates

    (a) 200 mm/min, 低倍; (b) 200 mm/min, 高倍; (c) 400 mm/min, 低倍; (d) 400 mm/min, 高倍; (e) 600 mm/min, 低倍; (f) 600 mm/min, 高倍

    表  1  304不锈钢丝材及基板的化学成分

    Table  1.   Chemical compositions of 304 stainless steel wire and substrate %

    材料CSiMnSPCrNiMoFe
    丝材0.060.71.20.0140.031880.18Bal.
    基板0.120.170.50.0270.028Bal.
    下载: 导出CSV

    表  2  电子束熔丝沉积成形304不锈钢工艺参数

    Table  2.   Process parameters of 304 stainless steel formed by EBF3

    试样
    编号
    束流强
    度/mA
    送丝速度/
    (mm·min−1
    进给速度/
    (mm·min−1
    抗拉强度/
    MPa
    屈服强度/
    MPa
    断后伸
    长率/%
    A1 18 1400 500
    A2 22 1400 500 1347.91 593.77 34.90
    A3 26 1400 500 1142.94 938.06 31.54
    B1 26 1200 500 1137.74 511.67 24.63
    B2 26 1500 500 893.27 453.41 20.61
    B3 26 1800 500 1240.80 880.00 35.67
    C1 26 1400 200 1228.25 600.43 29.13
    C2 26 1400 400 1328.92 711.60 34.45
    C3 26 1400 600 1213.10 546.42 28.07
    下载: 导出CSV
  • [1] Huang Xingguang, Sun Baofu, Sun Guohui, et al. Study on the heat treatment performance of TC4 titanium alloy formed parts based on electron beam additive manufacturing[J]. Iron Steel Vanadium Titanium, 2021,42(6):102−108. (黄星光, 孙宝福, 孙国辉, 等. 基于电子束增材制造的TC4钛合金成形件热处理性能研究[J]. 钢铁钒钛, 2021,42(6):102−108.

    Huang Xingguang, Sun Baofu, Sun Guohui, et al. Study on the heat treatment performance of TC4 titanium alloy formed parts based on electron beam additive manufacturing[J]. Iron Steel Vanadium Titanium, 2021, 42(6): 102−108.
    [2] Tang Huiping, Wang Jian, Lu Shenglu, et al. Research progress in selective electron beam melting[J]. Materials China, 2015,34(3):225−235. (汤慧萍, 王建, 逯圣路, 等. 电子束选区熔化成形技术研究进展[J]. 中国材料进展, 2015,34(3):225−235.

    Tang Huiping, Wang Jian, Lu Shenglu, et al. Research progress in selective electron beam melting[J]. Materials China, 2015, 34(3): 225−235.
    [3] Sun Baofu, Xu Bohan, Zhang Liping, et al. Research and optimization of the forming path for electron beam fusion additive manufacturing: Taking 304 stainless steel as an example[J]. Mechanical Strength, 2021,43(3):570−576. (孙宝福, 徐博翰, 张莉萍, 等. 电子束熔丝增材制造成形路径的研究与优化——以304不锈钢为例[J]. 机械强度, 2021,43(3):570−576.

    Sun Baofu, Xu Bohan, Zhang Liping, et al. Research and optimization of the forming path for electron beam fusion additive manufacturing: Taking 304 stainless steel as an example[J]. Mechanical Strength, 2021, 43(3): 570−576.
    [4] Taminger K M B, Hafley R A, Domack M S. Evolution and control of 2219 aluminium microstructural features through electron beam freeform fabrication[J]. Materials Science Forum, 2006,519:1297−1302.
    [5] Matz J E, Eagar T W. Carbide formation in alloy 718 during electron-beam solid freeform fabrication[J]. Metallurgical and Materials Transactions A, 2002,33(8):2559−2567. doi: 10.1007/s11661-002-0376-y
    [6] Wanjara P, Brochu M, Jahazi M. Electron beam freeforming of stainless steel using solid wire feed[J]. Materials & Design, 2007,28(8):2278−2286.
    [7] Węglowski M S, Błacha S, Pilarczyk J, et al. Electron beam additive manufacturing with wire–analysis of the process [C]//AIP Conference Proceedings. AIP Publishing LLC, 2018, 1960(1): 140015.
    [8] Polonsky A T, Lenthe W C, Echlin M L P, et al. Solidification-driven orientation gradients in additively manufactured stainless steel[J]. Acta Materialia, 2020,183:249−260. doi: 10.1016/j.actamat.2019.10.047
    [9] Bush R W, Brice C A. Elevated temperature characterization of electron beam freeform fabricated Ti–6Al –4V and dispersion strengthened Ti–8Al–1Er[J]. Materials Science and Engineering:A, 2012,554:12−21. doi: 10.1016/j.msea.2012.05.083
    [10] Dai Xiaoqin, Chen Hanning, Lei Jianbo, et al. Study on microstructure characteristics and properties of 304 stainless steel fabricated by laser additive[J]. Hot Working Process, 2017,46(16):83−86. (戴晓琴, 陈瀚宁, 雷剑波, 等. 激光增材制造304不锈钢显微结构特征与性能研究[J]. 热加工工艺, 2017,46(16):83−86.

    Dai Xiaoqin, Chen Hanning, Lei Jianbo, et al. Study on microstructure characteristics and properties of 304 stainless steel fabricated by laser additive[J]. Hot Working Process, 2017, 46(16): 83−86.
    [11] He Yuanling. Microstructure characterization and properties invertigation of welded joints of SUS304 stainless steel with welding [D]. Taiyuan: Shanxi Agricultural University, 2019. (何远灵. SUS304不锈钢TIG焊接接头的组织表征与性能研究 [D]. 太原: 山西农业大学, 2019.

    He Yuanling. Microstructure characterization and properties invertigation of welded joints of SUS304 stainless steel with welding [D]. Taiyuan: Shanxi Agricultural University, 2019.
    [12] Lippold J C, Kotecki J. Welding metallurgy and weldability of stainless steels [M]. John Wiley &Sons Inc. , 2005.
    [13] Shuxi. Study on the deposition process and stability of 304 stainless steel electron beam fusion wire[D]. Harbin: Harbin Institute of Technology, 2017. (树西. 304不锈钢电子束熔丝沉积工艺及稳定性研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    Shuxi. Study on the deposition process and stability of 304 stainless steel electron beam fusion wire[D]. Harbin: Harbin Institute of Technology, 2017.
    [14] Zhong Qunpeng, Zhao Zihua, Zhang Zheng. Development of “fractography"and research of fracture micromechanism[J]. Journal of Mechanical Strength, 2005,27(3):358−370. (钟群鹏, 赵子华, 张峥. 断口学的发展及微观断裂机理研究[J]. 机械强度, 2005,27(3):358−370.

    Zhong Qunpeng, Zhao Zihua, Zhang Zheng. Development of “fractography"and research of fracture micromechanism[J]. Journal of Mechanical Strength, 2005, 27(3): 358−370.
    [15] Li Hongying. Fracture analysis of metal tensile specimens[J]. Journal of Shanxi Datong University (Natural Science Edition), 2011,27(1):76−79. (李红英. 金属拉伸试样的断口分析[J]. 山西大同大学学报(自然科学版), 2011,27(1):76−79.

    Li Hongying. Fracture analysis of metal tensile specimens[J]. Journal of Shanxi Datong University (Natural Science Edition), 2011, 27(1): 76−79.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  224
  • HTML全文浏览量:  69
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-10
  • 刊出日期:  2024-07-02

目录

    /

    返回文章
    返回