中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒微合金化对中锰热成形钢氢脆敏感性的影响

刘浩 王贞 张施琦 葛锐 贾涓 刘静

刘浩, 王贞, 张施琦, 葛锐, 贾涓, 刘静. 钒微合金化对中锰热成形钢氢脆敏感性的影响[J]. 钢铁钒钛, 2024, 45(3): 169-175. doi: 10.7513/j.issn.1004-7638.2024.03.023
引用本文: 刘浩, 王贞, 张施琦, 葛锐, 贾涓, 刘静. 钒微合金化对中锰热成形钢氢脆敏感性的影响[J]. 钢铁钒钛, 2024, 45(3): 169-175. doi: 10.7513/j.issn.1004-7638.2024.03.023
Liu Hao, Wang Zhen, Zhang Shiqi, Ge Rui, Jia Juan, Liu Jing. Effect of vanadium microalloying on hydrogen embrittlement susceptibility of medium Mn based hot stamping steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 169-175. doi: 10.7513/j.issn.1004-7638.2024.03.023
Citation: Liu Hao, Wang Zhen, Zhang Shiqi, Ge Rui, Jia Juan, Liu Jing. Effect of vanadium microalloying on hydrogen embrittlement susceptibility of medium Mn based hot stamping steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(3): 169-175. doi: 10.7513/j.issn.1004-7638.2024.03.023

钒微合金化对中锰热成形钢氢脆敏感性的影响

doi: 10.7513/j.issn.1004-7638.2024.03.023
基金项目: 国家自然科学基金(52231003,52201084)。
详细信息
    作者简介:

    刘浩,1998年出生,男,硕士研究生,研究方向:钢的强韧化及服役性能, E-mail: 417266276@qq.com

    通讯作者:

    刘静,1964年出生,女,教授, E-mail: liujing@wust.edu.cn

  • 中图分类号: TF76,TG111.91

Effect of vanadium microalloying on hydrogen embrittlement susceptibility of medium Mn based hot stamping steel

  • 摘要: 利用慢应变速率拉伸、氢渗透以及氢显试验,结合SEM、TEM、EBSD分析,研究了0.12%钒对中锰热成形钢氢脆敏感性的影响。结果表明,钒微合金化对中锰热成形钢氢脆敏感性具有双重影响:一方面,钒不仅显著细化晶粒、析出了大量的纳米级含钒碳化物,使钢中的氢陷阱密度大幅增加,有效抑制了氢向铁素体/马氏体界面的富集,而且添加钒后长条状铁素体明显减少、小角度晶界占比增加,可进一步抑制裂纹的连续扩展,从而降低试验钢的氢脆敏感性;但另一方面,钒使钢中马氏体含量增加,会在一定程度上增加氢脆发生的风险。在常规的热成型工艺下,钒微合金化产生的有益作用更为显著,使含钒试验钢具备更优异的氢脆抗力。
  • 图  1  拉伸试样尺寸示意 (单位:mm)

    Figure  1.  Diagram of tensile specimen size

    图  2  试验钢的显微组织

    Figure  2.  Microstructure of test steels

    图  3  试验钢中大小角度晶界分布

    Figure  3.  Distribution maps of grain boundary at large angle and small angle in test steels

    图  4  试验钢中析出相形貌及EDS能谱分析

    Figure  4.  Morphology of precipitates and EDS energy spectrum of test steels

    图  5  试验钢在未充氢及充氢条件下的工程应力-应变曲线

    Figure  5.  Engineering strain-stress curves of H-free and H-charged test steels

    图  6  试验钢在充氢条件下拉伸断口宏观形貌与断口心部形貌

    (a)无钒钢宏观断口形貌;(b)含钒钢宏观断口形貌;(c)无钒钢断口心部形貌;(d)含钒钢断口心部形貌

    Figure  6.  Macroscopic morphology (a, b) and center morphology (c, d) of tensile fracture in test steels with H-charging

    图  7  试验钢在充氢条件下裂纹扩展形貌)

    Figure  7.  Crack propagation morphology of test steels with H-charging

    图  9  试验钢的氢渗透曲线

    Figure  9.  Hydrogen permeation curve of test steels

    图  8  银颗粒在组织中的分布(a)及银元素的EDS面分布(b)

    Figure  8.  Distribution of silver particles (a) and EDS distribution of silver element (b) in microstructure

    表  1  试验钢的化学成分

    Table  1.   Chemical compositions of test steels %

    材料CSiMnAlNbTiVFe
    无钒钢0.220.225.122.940.020.01Bal
    含钒钢0.230.205.372.880.020.030.12Bal
    下载: 导出CSV
  • [1] Jin Xuejun, Gong Yu, Han Xianhong, et al. A review of current state and prospect of the manufacturing and application of advanced hot stamping automobile steels[J]. Acta Metallurgica Sinica, 2020,56(4):411. (金学军, 龚煜, 韩先洪, 等. 先进热成形汽车钢制造与使用的研究现状与展望[J]. 金属学报, 2020,56(4):411.

    Jin Xue Jun, Gong Yu, Han Xian Hong, et al. A Review of Current State and Prospect of the Manufacturing and Application of Advanced Hot Stamping Automobile Steels [J]. Acta Metallurgica Sinica, 2020, 56 (4): 411.
    [2] Liu Hanhua. Study on hydrogen embrittlement resistance of Ti-microalloying hot forming steel for automobile[J]. Iron Steel Vanadium Titanium, 2022,43(4):178−183. (刘汉华. 不同钛含量汽车用热成型钢的抗氢脆敏感性研究[J]. 钢铁钒钛, 2022,43(4):178−183.

    Liu Han Hua. Study on hydrogen embrittlement resistance of Ti-microalloying hot forming steel for automobile [J]. Iron Steel Vanadium Titanium, 2022, 43(4): 178-183.
    [3] Ge Rui, Yang Rui, Liu Ziqi, et al. Effect of vanadium microalloying on mechanical properties of medium Mn based hot stamping steel and corresponding strengthening mechanism[J]. Journal of Iron and Steel Research, 2022,3:1−10. (葛锐, 杨睿, 刘子奇, 等. 钒对中锰热成形钢性能的影响及其强化机制[J]. 钢铁研究学报, 2022,3:1−10.

    Ge Rui, Yang Rui, Liu Zi Qi, et al. Effect of vanadium microalloying on mechanical properties of medium Mn based hot stamping steel and corresponding strengthening mechanism [J]. Journal of Iron and Steel Research, 2022, 3: 1-10.
    [4] Li Longfei, Song Bo, Cai Zeyun, et al. Effect of vanadium content on hydrogen diffusion behaviors and hydrogen induced ductility loss of X80 pipeline steel[J]. Materials Science & Engineering A, 2019,742:712−721.
    [5] Zhao Haoyang, Wang Pei, Li Jinxu, et al. Effect of vanadium content on hydrogen embrittlement of 1400 MPa grade high strength bolt[J]. Hydrogen Energy, 2021,46:34983−34997.
    [6] Park Tak Min, Kim Hye Jin, Um Ho Yong, et al. The possibility of enhanced hydrogen embrittlement resistance of medium-Mn steels by addition of micro-alloying elements [J].Materials Characterization, 2020, 165: 110386.
    [7] Wang Zhen, Liu Jing, Zhang Shiqi, et al. Effect of strain rate on hydrogen embrittlement susceptibility of DP780 steel with hydrogen pre-charging[J]. Journal of Chinese Society for Corrosion and Protection, 2022,42(1):106−111. (王贞, 刘静, 张施琦, 等. 应变速率对预充氢DP780钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2022,42(1):106−111.

    Wang Zhen, Liu Jing, Zhang Shi Qi, et al. Effect of strain rate on hydrogen embrittlement susceptibility of DP780 steel with hydrogen pre-charging [J]. Journal of Chinese Society for Corrosion and Protection, 2022, 42(1): 106-111.
    [8] Ichitani Koji, Kanno Motohiro, Kuramoto Shigeru. Recent development in hydrogen microprint technique and its application to hydrogen embrittlement[J]. ISIJ International, 2007,43(4):496−504.
    [9] Zhang Dazheng, Li Weijuan, Gao Xiuhua, et al. Effect of cold deformation before heat treatment on the hydrogen embrittlement sensitivity of high-strength steel for marine risers[J]. Materials Science & Engineering A, 2022,845:143220.
    [10] Chen Yong, Liu Jing, Huang Feng, et al. Influence of inclusions on hydrogen induced delayed cracking in hot stamping steels[J]. Journal of Iron and Steel Research International, 2019,26(11):10.
    [11] Huang Shan, Wu Riming, Chen Meng, et al. Effect of vanadium content on microstructure and mechanical properties of 4Cr5Mo2V steel[J]. Materials for Mechanical Engineering, 2022,46(7):70−75. (黄山, 吴日铭, 陈蒙, 等. 钒含量对4Cr5Mo2V钢显微组织与力学性能的影响[J]. 机械工程材料, 2022,46(7):70−75.

    Huang Shan, Wu Ri Ming, Chen Meng, et al. Effect of vanadium content on microstructure and mechanical properties of 4 Cr5 Mo2 V steel [J]. Materials for Mechanical Engineering, 2022, 46(7): 70-75.
    [12] Wang Zhen, Liu Jing, Huang Feng, et al. Hydrogen diffusion and its effect on hydrogen embrittlement in DP steels with different martensite content[J]. Frontiers in Materials, 2020,7:1−12.
    [13] Hadžipašić Anita Begić, Malina Jadranka, Nižnik Štefan. The influence of microstructure on hydrogen diffusion in dual phase steel[J]. Acta Metallurgica Slovaca, 2011,17(2):129−132.
    [14] Takahashi Jun, Kawakami Kazuto, Kobayashi Yukiko. Origin of hydrogen trapping site in vanadium carbide precipitation strengthening steel [J]. Acta Mater., 2018, 153: 193−204.
    [15] Koyama Motomichi, Lee Taekyung, Lee Chong Soo, et al. Grain refinement effect on cryogenic tensile ductility in a Fe-Mn-C twinning-induced plasticity steel[J]. Materials & Design, 2013,49:234−241.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  246
  • HTML全文浏览量:  82
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-21
  • 刊出日期:  2024-07-02

目录

    /

    返回文章
    返回