| [1] |
Xin Fengxian, Jiang Changyong, Lu Tianjian, et al. Equivalent gradient properties of porous material with macro void and panel structures[J]. Journal of the Acoustical Society of America, 2016, 140(4): 2993.
|
| [2] |
Chen Fei, Ma Lingling, Shen Qiang, et al. Pressureless sintering of silicon nitride ceramics with porous gradient structure for gas filter application[J]. International Journal of Materials Product Technology, 2011,42(1/2):3. doi: 10.1504/IJMPT.2011.044909
|
| [3] |
Liu Zhongjun, Liu Zhuomeng, Ji Shuai, et al. Low cost Ti-Si intermetallic compound membrane with nano-pores synthesized by in-situ reactive sintering process[J]. Scientific Reports, 2020, 10(1): 16750.
|
| [4] |
Liu Zhongjun, Liu Zhuomeng, Ji Shuai, et al. Fabrication of Ti-Si intermetallic compound porous membrane using an in-situ reactive sintering process[J]. Mater Lett, 2020,271:127786. doi: 10.1016/j.matlet.2020.127786
|
| [5] |
Zhao Shuang, Xie Kai, Guo Yu, et al. Fabrication and biological activity of 3D-printed polycaprolactone/magnesium porous scaffolds for critical size bone defect repair[J]. ACS Biomaterials Science Engineering, 2020,12(4):264−275.
|
| [6] |
Hindy A, Farahmand F, Pourdanesh F, et al. Synthesis and characterization of 3D-printed functionally graded porous titanium alloy[J]. Journal of Materials Science, 2020,55(6):267−272.
|
| [7] |
Zhang Zhijia, Zhao Jun, Qiao Zhijun. Nonsolvent-induced phase separation-derived TiO2 nanotube arrays/porous Ti electrode as high-energy-density anode for lithium-ion batteries[J]. Rare Metals, 2021,40(2):393−399. doi: 10.1007/s12598-020-01571-6
|
| [8] |
Singh H, Saxena P, Puri Y M. Materials selection and manufacturing of metal membranes for industrial applications[J]. Mater Lett, 2020,269(3):127557.
|
| [9] |
Zhang Yijie, Li Xianfeng, Chen Dong, et al. Si doping effects on the photocatalytic activity of TiO2 nanotubes film prepared by an anodization process[J]. Scripta Materialia, 2009,60(7):543−546. doi: 10.1016/j.scriptamat.2008.12.004
|
| [10] |
Yu Yongmei, Guo Chengjian, Zhang Xiaoling, et al. Dynamic recovery model of Fe-Si alloy steel[J]. Heat Treatment of Metals, 2018,43(5):28−33. (于永梅, 郭成健, 张小玲, 等. Fe- Si 合金高温变形流变应力的本构模型[J]. 金属热处理, 2018,43(5):28−33.Yu Yongmei, Guo Chengjian, Zhang Xiaoling, et al. Dynamic recovery model of Fe-Si alloy steel[J]. Heat Treatment of Metals, 2018, 43(5): 28−33.
|
| [11] |
Guo Fengxue, Wu Jie, Chen Yunbo, et al. Pore morphologies and compressive strength of TiC/NiAl porous composites[J]. Heat Treatment of Metals, 2020,45(5):1−5. (郭丰雪, 吴杰, 陈蕴博, 等. 多孔 TiC/NiAl 复合材料的孔洞形貌及抗压强度[J]. 金属热处理, 2020,45(5):1−5.Guo Fengxue, Wu Jie, Chen Yunbo, et al. Pore morphologies and compressive strength of TiC/NiAl porous composites[J]. Heat Treatment of Metals, 2020, 45(5): 1−5.
|
| [12] |
Yang Jianming, Tang Yang, Gu Hai, et al. Research and application status of 3D printing porous structures[J]. Materials Reports, 2018,32(15):163−173. (杨建明, 汤阳, 顾海, 等. 3D打印制备多孔结构的研究与应用现状[J]. 材料导报, 2018,32(15):163−173. doi: 10.11896/j.issn.1005-023X.2018.15.020Yang Jianming, Tang Yang, Gu Hai, et al. Research and application status of 3D printing porous structures[J]. Materials Reports, 2018, 32(15): 163−173. doi: 10.11896/j.issn.1005-023X.2018.15.020
|
| [13] |
Zhao Shu, Xie Kang, Guo Yue, et al. Fabrication and biological activity of 3D-printed polycaprolactone/magnesium porous scaffolds for critical size bone defect repair[J]. Acs Biomaterials Science Engineering, 2020,12(4):264−275.
|