Determination of rare earth elements in vanadium-titanium magnetite by ICP-MS
-
摘要: 准确、快速地测定钒钛磁铁矿中的稀土元素,对钒钛磁铁矿的高效利用有着重要的作用。针对目前国内外缺乏钒钛磁铁矿中稀土元素分析方法的问题,试验选取不同矿区具有代表性的5件钒钛磁铁矿作为试验样品,采用盐酸、氢氟酸、硝酸外加硫酸混合酸溶分解的方式,并结合电感耦合等离子体质谱仪检出限低、灵敏度高、干扰小的特点,对钒钛磁铁矿中稀土元素测定过程中的仪器条件、测定模式、内标元素、同位素选择及质谱干扰进行研究。结果表明,在最佳的仪器工作参数的条件下,采用STD模式,选择干扰小且丰度大的同位素,选择合适的内标元素Rh和Re,能够有效地降低基体效应引起的信号强度漂移。此外,通过精密度试验及加标回收试验发现,采用电感耦合等离子体质谱法测定钒钛磁铁矿中的稀土元素能获得良好的精密度与准确度,此方法准确有效。
-
关键词:
- 钒钛磁铁矿 /
- 稀土元素 /
- 电感耦合等离子体质谱法 /
- 准确度 /
- 精密度
Abstract: Accurate and rapid determination of rare earth elements in vanadium titanium magnetite plays an important role in the efficient utilization of vanadium titanium magnetite. In view of the lack of analysis methods for rare earth elements in vanadium titanium magnetite at home and abroad, 5 representative vanadium titanium magnetite crystals from different mining areas were selected as test samples, and hydrofluoric acid, nitric acid and sulfuric acid mixed acid solution decomposition method were adopted. Combined with the characteristics of inductively coupled plasma mass spectrometer with low detection limit, high sensitivity and low interference, the instrument conditions, internal standard elements, isotope selection and mass spectrum interference during the determination of rare earth elements in vanadium titanium magnetite were studied. The results show that the signal intensity drift caused by matrix effect can be effectively reduced by using STD mode, selecting the isotopes with small interference and large abundance, and selecting the appropriate internal standard elements Rh and Re under the conditions of the optimal instrument parameters. In addition, it is found by the precision tests and standard recovery tests that the inductively coupled plasma mass spectrometry method can obtain good precision and accuracy for the determination of rare earth elements in vanadium titanium magnetite. -
表 1 电感耦合等离子体质谱仪工作条件
Table 1. Inductively coupled plasma mass spectrometer operating conditions
射频功
率/W雾化器流量/
(L·min−1)冷却气流量/
(L·min−1)辅助气流量/
(L·min−1)采样深
度/步(采样锥/截取
锥)/mm扫描
方式测量
点/峰重复测
定次数停留时间/
(ms·点−1)扫描
次数测量时
间/s1400 1.0 16 1.2 88 1.1/0.7 跳峰 3 3 10 40 60 表 2 分析同位素、内标及干扰校正
Table 2. Analysis of isotopes, internal standards and interference correction
分析元素 内标 潜在干扰 89Y 103Rh 139La 185Re 140Ce 185Re 141Pr 185Re 143Nd 185Re 147Sm 185Re Gd,CeO, BaO 153Eu 185Re BaO 158Gd 185Re PrO,NdO,CeO 159Tb 185Re PrO,NdO, 163Dy 185Re SmO,NdO 165Ho 185Re SmO 166Er 185Re SmO,NdO 169Tm 185Re EuO 172Yb 185Re Dy,SmO,NdO 175Lu 185Re 表 3 方法精密度(RSD)
Table 3. Method precision (RSD)
元素 RSD/% A1 A2 A3 A4 A5 La2O3 3.33 2.51 3.07 3.63 3.03 CeO2 1.62 1.80 1.69 1.68 1.64 Pr6O11 6.84 5.95 6.19 7.44 5.86 Nd2O3 2.87 2.43 3.20 3.19 2.78 Sm2O3 6.55 6.30 6.22 6.71 5.59 Eu2O3 5.50 7.73 5.86 4.56 6.55 Gd2O3 5.10 6.45 4.54 4.28 5.08 Tb4O7 6.48 5.23 6.31 6.84 5.83 Dy2O3 6.44 5.95 6.64 6.97 6.42 Ho2O3 3.19 3.11 3.08 2.70 3.48 Er2O3 3.46 3.67 3.79 3.30 3.55 Tm2O3 3.47 3.60 3.50 3.34 3.61 Yb2O3 3.15 3.26 2.82 2.92 3.11 Lu2O3 3.45 5.39 4.14 3.87 4.53 Y2O3 2.28 2.00 2.30 2.14 2.24 表 4 加标回收率
Table 4. Recovery rate of spikes
元素 回收率/% A1 A2 A3 A4 A5 La2O3 98.35 101.2 97.25 104.56 96.25 CeO2 102.14 98.15 97.36 103.87 94.57 Pr6O11 97.38 96.57 102.36 96.74 103.56 Nd2O3 104.20 103.74 97.58 105.20 95.41 Sm2O3 102.56 98.97 94.34 104.57 97.37 Eu2O3 98.51 95.68 96.87 105.67 103.26 Gd2O3 97.32 94.57 103.25 96.35 105.46 Tb4O7 104.56 102.69 106.89 97.56 95.48 Dy2O3 103.86 105.86 98.87 95.42 106.54 Ho2O3 106.57 107.25 103.25 95.62 104.35 Er2O3 96.54 98.56 102.87 104.85 103.57 Tm2O3 104.58 106.25 93.57 96.12 107.25 Yb2O3 105.65 102.11 97.22 96.15 95.37 Lu2O3 106.78 104.37 95.87 94.53 103.57 Y2O3 98.25 95.61 103.58 105.41 97.45 -
[1] Yang Yaohui, Hui Bo, Yan Shiqiang, et al. Overview of global vanadium-titanium magnetite resources and comprehensive utilization[J]. Conservation and Utilization of Mineral Resources, 2023(4):1−11. (杨耀辉, 惠博, 颜世强, 等. 全球钒钛磁铁矿资源概况与综合利用研究进展[J]. 矿产综合利用, 2023(4):1−11. doi: 10.3969/j.issn.1000-6532.2023.04.001Yang Yaohui, Hui Bo, Yan Shiqiang, et al. Overview of global vanadium-titanium magnetite resources and comprehensive utilization[J]. Conservation and Utilization of Mineral Resources, 2023(4): 1−11. doi: 10.3969/j.issn.1000-6532.2023.04.001 [2] Wu Genglin, Su Ruihong, Zhang Guifeng, et al. Review on analytical methods of vanadium titanium magnetite[J]. Contemporary Chemical Industry , 2015, 44(1): 128−131. (吴庚林, 苏瑞红, 张桂凤, 等. 国内钒钛磁铁矿分析方法综述[J]. 当代化工, 2015, 44(1): 128−131.Wu Genglin, Su Ruihong, Zhang Guifeng, et al. Review on analytical methods of vanadium titanium magnetite[J]. Contemporary Chemical Industry , 2015, 44(1): 128−131. [3] Chen Chao, Zhang Yushu, Zhang Shaoxiang, et al. Iron recovery of a low grade vanadium-titanium magnetite and the element distributions in the process [J]. Iron Steel Vanadium Titanium, 2008, 39(5): 85−91. (陈超, 张裕书, 张少翔, 等 . 某低品位钒钛磁铁矿选铁试验及选铁过程中元素走向 [J]. 钢铁钒钛 , 2018, 39(5): 85−91.Chen Chao, Zhang Yushu, Zhang Shaoxiang, et al. Iron recovery of a low grade vanadium-titanium magnetite and the element distributions in the process [J]. Iron Steel Vanadium Titanium, 2008, 39(5): 85−91. [4] Yang Yaohui, Hui Bo, Liao Xiangwen, et al. Beneficiation test on low-grade and refractory olivine-pyroxenite type vanadium-titanium magnetic ore from Hongge [J]. Metal Mine, 2016(10): 77−82. (杨耀辉, 惠博, 廖祥文, 等 . 红格低品位难选橄辉岩型钒钛磁铁矿石选矿试验[J]. 金属矿山 , 2016(10): 77−82.Yang Yaohui, Hui Bo, Liao Xiangwen, et al. Beneficiation test on low-grade and refractory olivine-pyroxenite type vanadium-titanium magnetic ore from Hongge [J]. Metal Mine, 2016(10): 77−82. [5] Zhu Liqin. Determination of major and trace elements in vanadium titanomagnetite by ICP-AES[J]. Chinese Journal of Spectroscopy Laboratory, 2012,29(5):2673−2675. (朱丽琴. ICP-AES测定钒钛磁铁矿中的主量元素和微量元素[J]. 光谱实验室, 2012,29(5):2673−2675.Zhu Liqin. Determination of major and trace elements in vanadium titanomagnetite by ICP-AES[J]. Chinese Journal of Spectroscopy Laboratory, 2012, 29(5): 2673−2675. [6] Kang Dehua, Wang Tie, Yu Yuanjun, et al. Determination of chromium, cobalt, nickel, copper and gallium in vanadium titano-magnetite by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2013,33(6):9−13. (亢德华, 王铁, 于媛君, 等. 电感耦合等离子体质谱法测定钒钛磁铁矿中铬钴镍铜镓[J]. 冶金分析, 2013,33(6):9−13. doi: 10.3969/j.issn.1000-7571.2013.06.002Kang Dehua, Wang Tie, Yu Yuanjun, et al. Determination of chromium, cobalt, nickel, copper and gallium in vanadium titano-magnetite by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2013, 33(6): 9−13. doi: 10.3969/j.issn.1000-7571.2013.06.002 [7] Chen Tao. Determination of zinc in vanadium titanium magnetite by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2019,39(5):77−81. (陈涛. 电感耦合等离子体原子发射光谱法测定钒钛磁铁矿中锌[J]. 冶金分析, 2019,39(5):77−81.Chen Tao. Determination of zinc in vanadium titanium magnetite by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2019, 39(5): 77−81. [8] Feng Zongping. Determination of sixteen elements in iron ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2019,39(11):57−62. (冯宗平. 电感耦合等离子体原子发射光谱法测定铁矿石中16种元素[J]. 冶金分析, 2019,39(11):57−62.Feng Zongping. Determination of sixteen elements in iron ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2019, 39(11): 57−62. [9] Hui Bo, Yang Yaohui. Properties of olive-pyroxene vanadium-titanium magnetite ore in Hongge mining area of Panxi research and influence on mineral processing technology[J]. Multipurpose Utilization of Mineral Resources, 2020(4):126−129. (惠博, 杨耀辉. 攀西红格矿区橄辉岩型钒钛磁铁矿矿石性质研究及对选矿工艺的影响[J]. 矿产综合利用, 2020(4):126−129. doi: 10.3969/j.issn.1000-6532.2020.04.021Hui Bo, Yang Yaohui. Properties of olive-pyroxene vanadium-titanium magnetite ore in Hongge mining area of Panxi research and influence on mineral processing technology[J]. Multipurpose Utilization of Mineral Resources, 2020(4): 126−129. doi: 10.3969/j.issn.1000-6532.2020.04.021 [10] Wu Shitou, Wang Yaping, Sun Dezhong, et al. Determination of 15 rare earth elements in rare earth ores by inductively coupled plasma-atomic emission spectrometry: A comparison of four different pretreatment methods[J]. Rock and Mineral Analysis, 2014,33(1):12−19. (吴石头, 王亚平, 孙德忠, 等. 电感耦合等离子体发射光谱法测定稀土矿石中 15种稀土元素—四种前处理方法的比较[J]. 岩矿测试, 2014,33(1):12−19.Wu Shitou, Wang Yaping, Sun Dezhong, et al. Determination of 15 rare earth elements in rare earth ores by inductively coupled plasma-atomic emission spectrometry: A comparison of four different pretreatment methods[J]. Rock and Mineral Analysis, 2014, 33(1): 12−19. [11] Ren Jiangbo, Liu Yan, Wang Fenlian, et al. Mechanism and influencing factors of REY enrichment in deep-sea sediments[J]. Minerals, 2021,11(196):1−17. [12] Yasuhiro Kato, Koichiro Fujinaga, Kentaro Nakamura, et al. Deep-sea mud in the Pacific Ocean as a potentialresource for rare-earth elements[J]. Nature Geoscience, 2011,4(8):535−539. doi: 10.1038/ngeo1185 [13] Cheng Liya. Study on determination of rare earth ions in ion-absorbed rare earth mineral using ICP-AES[J]. Geology of Anhui, 2017,27(2):147−149. (程丽娅. 离子型稀土矿中离子稀土的ICP-AES测定方法研究[J]. 安徽地质, 2017,27(2):147−149.Cheng Liya. Study on determination of rare earth ions in ion-absorbed rare earth mineral using ICP-AES[J]. Geology of Anhui, 2017, 27(2): 147−149. [14] Wang Guan, Li Hualing, Ren Jing, et al. Characterization of oxide interference for the determination of rare earth elements in geological samples by high resolution ICP-MS [J]. Rock and Mineral Analysis, 2013(4): 561−567. (王冠, 李华玲, 任静, 等. 高分辨电感耦合等离子体质谱法测定地质样品中稀土元素的氧化物干扰研究[J] 岩矿测试, 2013(4): 561−567.Wang Guan, Li Hualing, Ren Jing, et al. Characterization of oxide interference for the determination of rare earth elements in geological samples by high resolution ICP-MS [J]. Rock and Mineral Analysis, 2013(4): 561−567. [15] Zhao Wei, Wang Qing, Zhang Huitang, et al. Determination of main and trace elements in ilmenite by using inductively coupled plasma atomic emission spectrometry method[J]. Shangdong Land and Resources, 2018,34(5):107−110. (赵伟, 王卿, 张会堂, 等. 电感耦合等离子体发射光谱法测定钛铁矿中主、微量元素[J]. 山东国土资源, 2018,34(5):107−110.Zhao Wei, Wang Qing, Zhang Huitang, et al. Determination of main and trace elements in ilmenite by using inductively coupled plasma atomic emission spectrometry method[J]. Shangdong Land and Resources, 2018, 34(5): 107−110. [16] Chen Hehai, Rong Defu, Fu Ranran, et al. Determination of fifteen rare-earth elements in iron ores using inductively coupled plasma mass spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2013,32(5):702−708. (陈贺海, 荣德福, 付冉冉, 等. 微波消解-电感耦合等离子体质谱法测定铁矿石中15个稀土元素[J]. 岩矿测试, 2013,32(5):702−708.Chen Hehai, Rong Defu, Fu Ranran, et al. Determination of fifteen rare-earth elements in iron ores using inductively coupled plasma mass spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2013, 32(5): 702−708. [17] Su Chunfeng. Determination of 16 rare earth elements in rare earth ores by inductively coupled plasma mass spectrometry[J]. Chinese Jorunal of Inorganic Analytical Chemistry, 2020,10(6):28−32. (苏春风. 电感耦合等离子体质谱(ICP-MS)法测定稀土矿中16种稀土元素含量[J]. 中国无机分析化学, 2020,10(6):28−32.Su Chunfeng. Determination of 16 rare earth elements in rare earth ores by inductively coupled plasma mass spectrometry[J]. Chinese Jorunal of Inorganic Analytical Chemistry, 2020, 10(6): 28−32. [18] Hong Qiuyang, Liang Dongyun, Li Bo, et al. Process mineralogy characteristics of a complex niobium-rare earth ore and implications for mineral processing[J]. Multipurpose Utilization of Mineral Resources, 2021(1):171−178. (洪秋阳, 梁冬云, 李波, 等. 某复杂铌稀土矿石工艺矿物性质及可选性分析[J]. 矿产综合利用, 2021(1):171−178.Hong Qiuyang, Liang Dongyun, Li Bo, et al. Process mineralogy characteristics of a complex niobium-rare earth ore and implications for mineral processing[J]. Multipurpose Utilization of Mineral Resources, 2021(1): 171−178. -

计量
- 文章访问数: 156
- HTML全文浏览量: 64
- PDF下载量: 15
- 被引次数: 0