中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全钒液流电池用聚氯乙烯&聚乙烯吡咯烷酮复合质子交换膜的制备与性能研究

代宇 曾泽华 张东彬 滕艾均 刘天豪 尹翔鹭 袁欣然

代宇, 曾泽华, 张东彬, 滕艾均, 刘天豪, 尹翔鹭, 袁欣然. 全钒液流电池用聚氯乙烯&聚乙烯吡咯烷酮复合质子交换膜的制备与性能研究[J]. 钢铁钒钛, 2024, 45(4): 1-7. doi: 10.7513/j.issn.1004-7638.2024.04.001
引用本文: 代宇, 曾泽华, 张东彬, 滕艾均, 刘天豪, 尹翔鹭, 袁欣然. 全钒液流电池用聚氯乙烯&聚乙烯吡咯烷酮复合质子交换膜的制备与性能研究[J]. 钢铁钒钛, 2024, 45(4): 1-7. doi: 10.7513/j.issn.1004-7638.2024.04.001
Dai Yu, Zeng Zehua, Zhang Dongbin, Teng Aijun, Liu Tianhao, Yin Xianglu, Yuan Xinran. Preparation and properties of polyvinylpyrrolidone & polyvinyl chloride composite proton exchange membrane for vanadium redox flow batteries[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 1-7. doi: 10.7513/j.issn.1004-7638.2024.04.001
Citation: Dai Yu, Zeng Zehua, Zhang Dongbin, Teng Aijun, Liu Tianhao, Yin Xianglu, Yuan Xinran. Preparation and properties of polyvinylpyrrolidone & polyvinyl chloride composite proton exchange membrane for vanadium redox flow batteries[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 1-7. doi: 10.7513/j.issn.1004-7638.2024.04.001

全钒液流电池用聚氯乙烯&聚乙烯吡咯烷酮复合质子交换膜的制备与性能研究

doi: 10.7513/j.issn.1004-7638.2024.04.001
基金项目: 国家重点研发课题“钒铬中间体可控还原短程制备高附加值产品技术”(2022YFC3901004);城市消防项目“天津市应用基础研究多元投入”(22JCQNJCO1750)。
详细信息
    作者简介:

    代宇,1989年出生,女,河北沧州人,工程师,主要研究方向为质子交换膜的制备与研究, E-mail:daiyu1624@163.com

    通讯作者:

    张东彬,1990年出生,男,福建漳州人,工程师,主要研究方向为钒基纳米粉体的制备与研究,E-mail:dongbin10010619@163.com

  • 中图分类号: TF841.3,TM911

Preparation and properties of polyvinylpyrrolidone & polyvinyl chloride composite proton exchange membrane for vanadium redox flow batteries

  • 摘要: 质子交换膜(PEM)作为全钒氧化还原液流电池(VRFB)的关键组成部分,在控制VRFB的性能以及成本方面起着重要的作用。制备了一系列不同比例的聚乙烯吡咯烷酮(PVP)&聚氯乙烯(PVC)复合质子交换膜,其中PVP由于胺基的质子化作用,在膜中进行离子传导,而PVC作为骨架起到支撑作用。通过调整复合膜中PVP和PVC的比例,得到性能适用于全钒液流电池的质子交换膜。研究发现,PVP&PVC复合膜中PVC含量增加,膜的机械性能增强,钒离子透过率降低;而膜中PVP含量增加,膜的电导率和溶胀随之变大。测试结果表明,当复合膜中PVP和PVC质量比为1:1时,混合膜的质子选择性最高为3.8×103 S·min·cm−3,复合膜综合性能最好,并且在电流密度为50 mA·cm−2时,该单电池具有较高的充放电容量。
  • 图  1  PVP&PVC-x:y混合膜制备流程和结构

    Figure  1.  Schematic of the fabrication procedure and structure for PVP&PVC-x:y membrane

    图  2  PVP&PVC-1:1混合膜的微观形貌

    (a)平面SEM形貌;(b)截面SEM形貌;(c)TEM形貌

    Figure  2.  Microstructure of PVP&PVC-1:1 composite membrane

    图  3  PVP&PVC-x:y膜的吸水率和酸掺杂率随时间的变化

    Figure  3.  Water uptake and acid doping content of PVP&PVC-x:y membranes as a function of doping time

    图  4  PVP&PVC-x:y混合膜的面电阻、质子电导率、VO2+渗透率和质子选择性

    Figure  4.  Area specific resistance, proton conductivity, VO2+ permeability and proton selectivity of PVP&PVC-x:y membranes

    图  5  透过PVP&PVC-x:y膜的VO2+浓度随时间变化曲线

    Figure  5.  Permeability of vanadium ions through PVP&PVC-x:y membranes

    图  6  在68 ℃下,PVP&PVC-x:y膜在Fenton溶液中的质量保留率

    Figure  6.  Fenton test results of PVP&PVC-x:y membranes at 68 ℃

    图  7  PVP&PVC-x:y膜制备VRFB的充放电曲线

    Figure  7.  Charge–discharge curves of VRFB with PVP&PVC-x:y membranes

    图  8  PVP&PVC-1:1膜组装的VRFB在50 mA ·cm−2时的循环效率性能

    Figure  8.  Cycling performance of efficiencies for VRFB assembled with PVP&PVC-1:1 membrane at 50 mA·cm−2

    表  1  PVP&PVC-x:y膜的吸水率、酸掺杂率和溶胀

    Table  1.   The Water uptake, acid doping and swelling of membranes %

    膜样品浸入水中浸入酸中
    吸水率面积溶胀体积溶胀酸掺杂率面积溶胀体积溶胀
    PVP&PVC-2:159.542.363.276.953.183.0
    PVP&PVC-1:119.312.22634.835.273.0
    PVP&PVC-1:25.22.95.213.014.225.4
    下载: 导出CSV

    表  2  酸掺杂的PVP&PVC-x:y膜的机械性能

    Table  2.   Mechanical properties of the PVP&PVC-x:y membranes doped in 3 mol/L SA solution

    膜样品拉伸强度/MPa断裂伸长率/%
    SA/PVP&PVC-2:113.2±1.5120.0±2.9
    SA/PVP&PVC-1:130.1±2.5105.6±3.8
    SA/PVP&PVC-1:236.5±1.972.2±3.6
    下载: 导出CSV

    表  3  PVP&PVC-1:1膜在不同电流密度下的电池性能

    Table  3.   Cell performance assembled with PVP&PVC-1:1 membrane at various current densities

    电流密度/(mA·cm−2CE/%VE/%EE/%
    2083.089.974.6
    5092.786.580.2
    10094.983.279.0
    下载: 导出CSV
  • [1] Gao J, Chen H, Li Y, et al. Fuel consumption and exhaust emissions of diesel vehicles in worldwide harmonized light vehicles test cycles and their sensitivities to eco-driving factors[J]. Energy Conversion and Management, 2019,196:605-613. doi: 10.1016/j.enconman.2019.06.038
    [2] Pursiheimo E, Holttinen H, Koljonen T. Inter-sectoral effects of high renewable energy share in global energy system[J]. Renewable Energy, 2019,136:1119-1129.
    [3] Zhang Chao, Wei Yili, Cao Pengfei, et al. Energy storage system: Current studies on batteries and power condition system [J]. Renewable & Sustainable Energy Reviews, 2018, 82(3): 3091-3106.
    [4] Thaller L H. Electrically rechargeable Redox flow cell[C]//9th Intersociety Energy Conversion Engineering Conference, 1976. doi: US3996064 A.
    [5] Yon Ruiting, Wang Qing. Redox-targeting-based flow batteries for large-scale energy storage[J]. Advanced Materials, 2018, 30(47):1802406.1-13.
    [6] Shi Yu, Eze Chika, Xiong Binyu, et al. Recent development of membrane for vanadium redox flow battery applications: A review[J]. Applied Energy, 2019,238:202-224. doi: 10.1016/j.apenergy.2018.12.087
    [7] Lee M S, Kang H G, Jeon J D, et al. A novel amphoteric ion-exchange membrane prepared by the pore-filling technique for vanadium redox flow batteries[J]. RSC Adv, 2016,6(67):63023-63029. doi: 10.1039/C6RA07790K
    [8] Mohammadi T, Skyllaskazacos M. Preparation of sulfonated composite membrane for vanadium redox flow battery applications[J]. J Membr Sci, 1995,107(1-2):35-45. doi: 10.1016/0376-7388(95)00096-U
    [9] Schwenzer B, Zhang J, Kim S, et al. Membrane development for vanadium redox flow batteries[J]. Chem Sus Chem, 2021,4(10):1388-1406.
    [10] Wu Chunxiao, Lu Shanfu, Wang Haining, et al. A novel polysulfone-polyvinylpyrrolidone membrane with superior proton-to-vanadium ion selectivity for vanadium redox flow batteries[J]. Journal of Materials Chemistry A, 2016,4(4):1174-1179. doi: 10.1039/C5TA08593D
    [11] Li Anfeng, Wang Gang, Wei Xiaoyan, et al. Highly selective sulfonated poly(ether ether ketone)/polyvinylpyrrolidone hybrid membranes for vanadium redox flow batteries[J]. Journal of Materials Science, 2020,55(35):1-14.
    [12] Zhang Qi, Dong Quanfeng, Zheng Mingsen, et al. The preparation of a novel anion-exchange membrane and its application in all-vanadium redox batteries[J]. Journal of Membrane Science, 2012,421-422:232-237.
    [13] Wang Shengyao, Fang Lifeng, Cheng Liang, et al. Novel ultrafiltration membranes with excellent antifouling properties and chlorine resistance using a poly(vinyl chloride)-based copolymer[J]. Journal of Membrane Science, 2018,549: 101-110.
    [14] Yong Ming, Zhang Yuqing, Sun Shuai, et al. Properties of polyvinyl chloride (PVC) ultrafiltration membrane improved by lignin: Hydrophilicity and antifouling[J]. Journal of Membrane Science, 2019,575:50-59. doi: 10.1016/j.memsci.2019.01.005
    [15] Li Mei, Han Li. General chemistry[M]. Shanghai: Shanghai Jiao Tong University Press, 2015. (李梅, 韩莉. 普通化学[M]. 上海: 上海交通大学出版社, 2015.

    Li Mei, Han Li. General chemistry[M]. Shanghai: Shanghai Jiao Tong University Press, 2015.
    [16] Dai Yu, Wang Jin, Tao Peipei, et al. Various hydrophilic carbon dots doped high temperature proton exchange composite membranes based on polyvinylpyrrolidone and polyethersulfone[J]. Journal of Colloid and Interface Science, 2019,553:503-511. doi: 10.1016/j.jcis.2019.06.020
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  459
  • HTML全文浏览量:  85
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-18
  • 刊出日期:  2024-08-30

目录

    /

    返回文章
    返回