中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔盐氯化用熔体组分对体系物性的影响研究

何艺霖 徐健淋 马占山 庞忠亚 朱福兴 邹星礼 鲁雄刚

何艺霖, 徐健淋, 马占山, 庞忠亚, 朱福兴, 邹星礼, 鲁雄刚. 熔盐氯化用熔体组分对体系物性的影响研究[J]. 钢铁钒钛, 2024, 45(4): 8-15, 28. doi: 10.7513/j.issn.1004-7638.2024.04.002
引用本文: 何艺霖, 徐健淋, 马占山, 庞忠亚, 朱福兴, 邹星礼, 鲁雄刚. 熔盐氯化用熔体组分对体系物性的影响研究[J]. 钢铁钒钛, 2024, 45(4): 8-15, 28. doi: 10.7513/j.issn.1004-7638.2024.04.002
He Yilin, Xu Jianlin, Ma Zhanshan, Pang Zhongya, Zhu Fuxing, Zou Xingli, Lu Xionggang. Study on the influences of melt components on the physical properties of molten salt chlorination system[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 8-15, 28. doi: 10.7513/j.issn.1004-7638.2024.04.002
Citation: He Yilin, Xu Jianlin, Ma Zhanshan, Pang Zhongya, Zhu Fuxing, Zou Xingli, Lu Xionggang. Study on the influences of melt components on the physical properties of molten salt chlorination system[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 8-15, 28. doi: 10.7513/j.issn.1004-7638.2024.04.002

熔盐氯化用熔体组分对体系物性的影响研究

doi: 10.7513/j.issn.1004-7638.2024.04.002
基金项目: 钒钛资源综合利用产业技术创新战略联盟2022 年协同研发项目(FTLM-202212);国家重点研发计划项目(2022YFC2906100);国家自然科学基金(52022054)。
详细信息
    作者简介:

    何艺霖,1999年出生,男,江苏扬州人,在读硕士,研究方向为热力学计算和熔盐物性研究,E-mail:heyilin20212021@163.com

    通讯作者:

    邹星礼,1984年出生,男,重庆黔江人,教授,长期从事熔盐电化学、冶金物化、复杂含钛矿精准提纯等方面的基础研究工作,E-mail:xlzou@shu.edu.cn

  • 中图分类号: TF823,TQ151.9

Study on the influences of melt components on the physical properties of molten salt chlorination system

  • 摘要: 氯化物熔盐物性对于熔盐氯化法制备四氯化钛效率至关重要。为了考察氯化用熔盐组分含量变化对熔盐体系物性的影响规律,以工业生产中的熔盐为对象,对正常原盐、泡沫盐和过滤熔盐的电导率和粘度物性进行了测试以及XRD物相分析、化学成分分析。根据实际生产中的组分配比以及化学分析结果,设置了三因素为FeCl2、FeCl3以及MgCl2 : NaCl的正交试验,研究不同组分配比下熔盐体系的物性变化。结果表明:FeCl2含量对熔盐体系电导率影响最为显著,每5%的FeCl2增加量会使熔盐整体电导率提高0.33 S/cm;FeCl3含量对熔盐体系粘度影响最大,其组分占比在10 %~ 15%区间内的影响最为明显。最后,利用综合评分法评估出最佳的熔盐氯化组分方案为:CaCl2 4%、FeCl2 20%、FeCl3 5%、MgCl2 : NaCl = 1 : 1。
  • 图  1  熔盐表观形貌

    (a)正常原盐;(b)泡沫盐;(c)过滤熔盐

    Figure  1.  Photos of the molten salts

    图  2  正常原盐、泡沫盐和过滤熔盐的XRD谱

    Figure  2.  XRD patterns of normal raw salt, foam salt and filtered molten salt

    图  3  24 ℃的1 mol/L KCl溶液电导率测试标定结果

    Figure  3.  Conductivity test result for 1 mol/L KCl solution at 24 ℃

    图  4  三种工业盐的电导率

    Figure  4.  Conductivity of three industrial salts

    图  5  标准粘度液的粘度值

    Figure  5.  The viscosity of standard viscosity liquid

    图  6  正常原盐和过滤熔盐粘度

    Figure  6.  Viscosity of normal raw salt and filtered molten salt

    图  7  泡沫盐粘度

    Figure  7.  Viscosity of foam salt

    图  8  氯化熔盐体系在700 、750、800 ℃条件下的电导率测试

    Figure  8.  Conductivity test of chlorinated molten salt system at 700, 750 ℃ and 800 ℃

    图  9  氯化熔盐体系在700、750、800 ℃条件下的粘度测试

    Figure  9.  Viscosity test of chlorinated molten salt system at 700, 750 ℃ and 800 ℃

    表  1  试剂样品信息

    Table  1.   Reagent sample information

    试剂名称 纯度(AR)/% 品牌
    氯化钠 ≥99.5 Greagent
    无水氯化镁 99.5 益之辰
    氯化钙 99.0 阿拉丁
    无水氯化亚铁 99.5 麦克林
    无水氯化铁 99.5 麦克林
    下载: 导出CSV

    表  2  正交试验因素及水平

    Table  2.   Orthogonal experimental factors and horizontal parameters

    水平 因素
    A
    FeCl2含量/%
    B
    FeCl3含量/%
    C
    L = MgCl2 : NaCl
    1 5 0 3 : 2
    2 10 5 1 : 1
    3 15 10 2 : 3
    4 20 15 1 : 2
    注:CaCl2含量占比固定为4%,基础盐系即MgCl2+NaCl的含量占比由1 - FeCl2% - FeCl3% - CaCl2%得出
    下载: 导出CSV

    表  3  氯化熔盐在750 ℃条件下的电导率分析结果

    Table  3.   Conductivity analysis results of chlorinated molten salt at 750 ℃

    试验号w(FeCl2)/%w(FeCl3)/%基础盐系Lκ/(S·cm−1)
    1503:21.30
    2551:11.45
    35102:31.42
    45151:21.18
    51001:11.58
    61053:21.17
    710101:22.35
    810152:31.30
    91502:31.29
    101551:22.24
    1115103:21.22
    1215151:12.84
    132001:21.45
    142052:32.99
    1520101:11.63
    1620153:23.23
    k11.3371.4051.730
    k21.6001.9631.875
    k31.8971.6551.750
    k42.3252.1381.805
    极差R0.9880.7330.145
    下载: 导出CSV

    表  4  氯化熔盐在750 ℃条件下的粘度分析结果

    Table  4.   Viscosity analysis results of chlorinated molten salt at 750 ℃

    试验号w(FeCl2)/%w(FeCl3)/%基础盐系Lη/(mPa·s)
    1503:24.69
    2551:14.89
    35102:35.28
    45151:26.36
    51001:15.24
    61053:25.49
    710101:25.10
    810152:36.38
    91502:35.77
    101551:24.97
    1115103:25.77
    1215151:15.49
    132001:25.01
    142052:35.21
    1520101:15.40
    1620153:25.78
    k15.3055.1785.433
    k25.5535.1405.255
    k35.5005.3875.660
    k45.3506.0035.360
    极差R0.2480.8630.405
    下载: 导出CSV

    表  5  氯化熔盐在750 ℃条件下的多指标综合评分结果

    Table  5.   Results of multi-index comprehensive score of chlorinated molten salt at 750 ℃

    试验号 w(FeCl2)/% w(FeCl3)/% 基础盐系L 电导率
    隶属度
    粘度
    隶属度
    综合分
    1 5 0 3:2 0.06 1.00 0.53
    2 5 5 1:1 0.14 0.88 0.51
    3 5 10 2:3 0.12 0.65 0.39
    4 5 15 1:2 0.00 0.01 0.01
    5 10 0 1:1 0.20 0.67 0.44
    6 10 5 3:2 0.00 0.53 0.26
    7 10 10 1:2 0.57 0.76 0.67
    8 10 15 2:3 0.06 0.00 0.03
    9 15 0 2:3 0.06 0.36 0.21
    10 15 5 1:2 0.52 0.83 0.68
    11 15 10 3:2 0.02 0.36 0.19
    12 15 15 1:1 0.81 0.53 0.67
    13 20 0 1:2 0.14 0.81 0.47
    14 20 5 2:3 0.88 0.69 0.79
    15 20 10 1:1 0.22 0.58 0.40
    16 20 15 3:2 1.00 0.36 0.68
    k1 1.44 1.65 1.66
    k2 1.40 2.24 2.02
    k3 1.75 1.65 1.42
    k4 2.34 1.39 1.83
    极差R 0.94 0.85 0.60
    下载: 导出CSV
  • [1] Yang Fang, Li Yanli, Shen Chengxiu, et al. Research progress on preparation and forming technology of titanium and titanium alloy powder[J]. Powder Metallurgy Technology, 2023,41(4):330-337. (杨芳, 李延丽, 申承秀, 等. 钛及钛合金粉末制备与成形工艺研究进展[J]. 粉末冶金技术, 2023,41(4):330-337.

    Yang Fang, Li Yanli, Shen Chengxiu, et al. Research progress on preparation and forming technology of titanium and titanium alloy powder[J]. Powder Metallurgy Technology, 2023, 41(4): 330-337.
    [2] Isaac M M, Mxolisi B S. Effects of porosity on the corrosion behaviour of PM-fabricated titanium foams for biomedical applications[J]. International Journal of Electrochemical Science, 2024,19(3):100495. doi: 10.1016/j.ijoes.2024.100495
    [3] Yang Yaohui, Hui Bo, Yan Shiqiang, et al. Research progress on global vanadium-titanium-magnetite resources and comprehensive utilization[J]. Multipurpose Utilization of Mineral Resources, 2023(4):1-11. (杨耀辉, 惠博, 颜世强, 等. 全球钒钛磁铁矿资源概况与综合利用研究进展[J]. 矿产综合利用, 2023(4):1-11. doi: 10.3969/j.issn.1000-6532.2023.04.001

    Yang Yaohui, Hui Bo, Yan Shiqiang, et al. Research progress on global vanadium-titanium-magnetite resources and comprehensive utilization[J]. Multipurpose Utilization of Mineral Resources, 2023(4): 1-11. doi: 10.3969/j.issn.1000-6532.2023.04.001
    [4] Fu Ganghua, Yao Hongguo, Chen Feng, et al. Research progress on comprehensive utilization of chlorination waste slag of molten salt[J]. Multipurpose Utilization of Mineral Resources, 2023(3):112-118. (付刚华, 姚洪国, 陈凤, 等. 熔盐氯化废渣综合利用研究进展[J]. 矿产综合利用, 2023(3):112-118. doi: 10.3969/j.issn.1000-6532.2023.03.019

    Fu Ganghua, Yao Hongguo, Chen Feng, et al. Research progress on comprehensive utilization of chlorination waste slag of molten salt[J]. Multipurpose Utilization of Mineral Resources, 2023(3): 112-118. doi: 10.3969/j.issn.1000-6532.2023.03.019
    [5] Li Liang. Research progress on the application and technology of titanium tetrachloride at home and abroad[J]. Light Metals, 2021(10):42-48. (李亮. 国内外四氯化钛的应用及工艺技术研究进展[J]. 轻金属, 2021(10):42-48.

    Li Liang. Research progress on the application and technology of titanium tetrachloride at home and abroad[J]. Light Metals, 2021(10): 42-48.
    [6] Luo Zaiguo, Yang Zhen, Yang Xiaodong, et al. Study on the production of TiCl4 by boiling chlorination furnace without sieve plate[J]. Yunnan Metallurgy, 2018,47(2):65-68. (罗在国, 杨振, 杨晓东, 等. 无筛板沸腾氯化炉生产TiCl4工艺研究[J]. 云南冶金, 2018,47(2):65-68. doi: 10.3969/j.issn.1006-0308.2018.02.010

    Luo Zaiguo, Yang Zhen, Yang Xiaodong, et al. Study on the production of TiCl4 by boiling chlorination furnace without sieve plate[J]. Yunnan Metallurgy, 2018, 47(2): 65-68. doi: 10.3969/j.issn.1006-0308.2018.02.010
    [7] Wang Jun, Zhao Yingtao, Cao Li, et al. Numerical simulation of boiling chlorinated gas-solid two-phase flow in a spouted bed of titanium slag[J]. Conservation and Utilization of Mineral Resources, 2017(6):66-74. (王军, 赵英涛, 曹丽, 等. 钛渣喷动床沸腾氯化气固两相流数值模拟[J]. 矿产保护与利用, 2017(6):66-74.

    Wang Jun, Zhao Yingtao, Cao Li, et al. Numerical simulation of boiling chlorinated gas-solid two-phase flow in a spouted bed of titanium slag[J]. Conservation and Utilization of Mineral Resources, 2017(6): 66-74.
    [8] Bordbar H, Yousefi A A, Abedini H. Production of titanium tetrachloride (TiCl4) from titanium ores: A review[J]. Polyolefins Journal, 2017,4(2):149-173.
    [9] Kroll W. The production of ductile titanium[J]. Journal of the Electrochemical Society, 1940,78(1):35-47.
    [10] Qi Manfu. Analysis of titanium tetrachloride production technology[J]. Chemical Enterprise Management, 2022(3):55-57. (齐满富. 四氯化钛生产工艺分析[J]. 化工管理, 2022(3):55-57.

    Qi Manfu. Analysis of titanium tetrachloride production technology[J]. Chemical Enterprise Management, 2022(3): 55-57.
    [11] Yang Xinping, Wang Xiufeng. Research progress in conductivity measurement of high-temperature melt[J]. China Ceramics, 2010,46(11):12-16. (杨新平, 王秀峰. 高温熔体电导率测试研究进展[J]. 中国陶瓷, 2010,46(11):12-16.

    Yang Xinping, Wang Xiufeng. Research progress in conductivity measurement of high-temperature melt[J]. China Ceramics, 2010, 46(11): 12-16.
    [12] Kan H M, Wang Z W, Ban Y G, et al. Electrical conductivity of Na3AlF6-AlF3-Al2O3-CaF2-LiF(NaCl) system electrolyte[J]. Transactions of Nonferrous Metals Society of China, 2007(1):181-186.
    [13] Shigeta H, Hidehiro H, Kazumi O. Electrical conductivity of molten slags for electro-slag remelting[J]. Transactions of the Iron & Steel Institute of Japan, 2006,23(12):1053-1058.
    [14] Long Yao, Yu Zhefeng, Wang Xin, et al. Research progress of viscosity and measurement technology of high-temperature melt[J]. Materials Research and Application, 2023,17(3):483-494. (龙耀, 于哲峰, 王昕, 等. 高温熔体粘度及其测量技术的研究进展[J]. 材料研究与应用, 2023,17(3):483-494.

    Long Yao, Yu Zhefeng, Wang Xin, et al. Research progress of viscosity and measurement technology of high-temperature melt[J]. Materials Research and Application, 2023, 17(3): 483-494.
    [15] Shao Hongfei, Liu Yuanjun, Ren Wanjie, et al. Research progress of viscosity measurement methods and reference materials for non-Newtonian fluids[J]. Journal of Astronautic Metrology and Measurement, 2019,39(Z1):1-5. (邵鸿飞, 刘元俊, 任万杰, 等. 非牛顿流体粘度测试方法及标准物质研究进展[J]. 宇航计测技术, 2019,39(Z1):1-5.

    Shao Hongfei, Liu Yuanjun, Ren Wanjie, et al. Research progress of viscosity measurement methods and reference materials for non-Newtonian fluids[J]. Journal of Astronautic Metrology and Measurement, 2019, 39(Z1): 1-5.
    [16] Wang Xiaojie, Zhu Shanshan, Wang Xiaopo, et al. High pressure liquid viscosity test system for falling body method[J]. Journal of Engineering Thermophysics, 2020,41(4):788-791. (王小杰, 朱山杉, 王晓坡, 等. 落体法流体高压液相黏度实验系统[J]. 工程热物理学报, 2020,41(4):788-791.

    Wang Xiaojie, Zhu Shanshan, Wang Xiaopo, et al. High pressure liquid viscosity test system for falling body method[J]. Journal of Engineering Thermophysics, 2020, 41(4): 788-791.
    [17] Wei Xiaolan, Xie Pei, Wang Weilong, et al. Calculation of phase diagram of ternary chloride system containing calcium and thermal stability of molten salt[J]. CIESC Journal, 2021,72(6):3074-3083. (魏小兰, 谢佩, 王维龙, 等. 含钙三元氯化物体系相图计算与熔盐热稳定性[J]. 化工学报, 2021,72(6):3074-3083.

    Wei Xiaolan, Xie Pei, Wang Weilong, et al. Calculation of phase diagram of ternary chloride system containing calcium and thermal stability of molten salt[J]. CIESC Journal, 2021, 72(6): 3074-3083.
    [18] Yin Yue. Thermal stability of chloride molten salt and thermal properties of molten salt enhancement[D]. Guangzhou: South China University of Technology, 2018. (尹月. 氯化物熔盐热稳定性与熔盐热物性强化[D]. 广州: 华南理工大学, 2018.

    Yin Yue. Thermal stability of chloride molten salt and thermal properties of molten salt enhancement[D]. Guangzhou: South China University of Technology, 2018.
    [19] Wu J, Ni H, Liang W, et al. Molecular dynamics simulation on local structure and thermodynamic properties of molten ternary chlorides systems for thermal energy storage[J]. Computational Materials Science, 2019,170:109051. doi: 10.1016/j.commatsci.2019.05.049
    [20] Chen Feng, Wen Yuekai, Guo Yufeng, et al. Research status of viscosity characteristics of chlorinated molten salt system[J]. Inorganic Chemicals Industry, 2022,54(6):1-5. (陈凤, 问悦凯, 郭宇峰, 等. 氯化熔盐体系黏度特性研究现状[J]. 无机盐工业, 2022,54(6):1-5.

    Chen Feng, Wen Yuekai, Guo Yufeng, et al. Research status of viscosity characteristics of chlorinated molten salt system[J]. Inorganic Chemicals Industry, 2022, 54(6): 1-5.
    [21] Fan Jianfeng, Yuan Zhangfu, Li Jing, et al. Viscosity of molten CaCl2-MgCl2 system[J]. The Chinses Journal of Nonferrous Metals, 2004(10):1759-1762. (范建峰, 袁章福, 李晶, 等. 熔融CaCl2-MgCl2体系的粘度[J]. 中国有色金属学报, 2004(10):1759-1762. doi: 10.3321/j.issn:1004-0609.2004.10.024

    Fan Jianfeng, Yuan Zhangfu, Li Jing, et al. Viscosity of molten CaCl2-MgCl2 system[J]. The Chinses Journal of Nonferrous Metals, 2004(10): 1759-1762. doi: 10.3321/j.issn:1004-0609.2004.10.024
    [22] Wei Xiaolan, Xie Pei, Zhang Xuechuan, et al. Study on preparation and thermophysical properties of chloride molten salt materials[J]. CIESC Journal, 2020,71(5):2423-2431. (魏小兰, 谢佩, 张雪钏, 等. 氯化物熔盐材料的制备及其热物理性质研究[J]. 化工学报, 2020,71(5):2423-2431.

    Wei Xiaolan, Xie Pei, Zhang Xuechuan, et al. Study on preparation and thermophysical properties of chloride molten salt materials[J]. CIESC Journal, 2020, 71(5): 2423-2431.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  89
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-19
  • 刊出日期:  2024-08-30

目录

    /

    返回文章
    返回