中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

偏钒酸钠化学合成法制备VOSO4研究

夏甫哈提·艾日肯江 温婧 余唐霞 姜涛

夏甫哈提·艾日肯江, 温婧, 余唐霞, 姜涛. 偏钒酸钠化学合成法制备VOSO4研究[J]. 钢铁钒钛, 2024, 45(4): 16-22. doi: 10.7513/j.issn.1004-7638.2024.04.003
引用本文: 夏甫哈提·艾日肯江, 温婧, 余唐霞, 姜涛. 偏钒酸钠化学合成法制备VOSO4研究[J]. 钢铁钒钛, 2024, 45(4): 16-22. doi: 10.7513/j.issn.1004-7638.2024.04.003
Xiafuhati Airikenjiang, Wen Jing, Yu Tangxia, Jiang Tao. Study on preparation of VOSO4 by chemical synthesis of sodium metavanadate[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 16-22. doi: 10.7513/j.issn.1004-7638.2024.04.003
Citation: Xiafuhati Airikenjiang, Wen Jing, Yu Tangxia, Jiang Tao. Study on preparation of VOSO4 by chemical synthesis of sodium metavanadate[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 16-22. doi: 10.7513/j.issn.1004-7638.2024.04.003

偏钒酸钠化学合成法制备VOSO4研究

doi: 10.7513/j.issn.1004-7638.2024.04.003
基金项目: 国家自然科学基金(52174277,52374300,52204309)。
详细信息
    作者简介:

    夏甫哈提·艾日肯江,1997年出生,男,硕士研究生,主要从事冶金工艺研究,E-mail:2502284866@qq.com

    通讯作者:

    姜涛,1973年出生,男,教授,研究方向:共伴生资源综合利用理论与技术,冶金工艺理论及新工艺等,E-mail: jiangt@smm.neu.edu.cn

  • 中图分类号: TF841.3

Study on preparation of VOSO4 by chemical synthesis of sodium metavanadate

  • 摘要: 硫酸氧钒(VOSO4)电解液是钒电池中电化学反应的活性物质和能量载体,其品质直接影响钒电池的能量效率、能量密度和使用寿命等性能。以偏钒酸钠(NaVO3)为原料,亚硫酸钠(Na2SO3)为还原剂,通过还原、沉淀、酸溶、结晶工艺制得了VOSO4产物,探索了各因素对钒回收率的影响,并对中间产物VO(OH)2和VOSO4产物进行表征。结果表明:偏钒酸钠浸出液以m(V):m(S)为1:0.5加入亚硫酸钠,在pH为2.5的溶液中于70 ℃恒温下还原60 min后,实现了钒(V)还原为钒(IV)。将pH调至7.0,并在20 ℃下反应10 min,蓝色溶液可转化成VO(OH)2中间产物,此时钒回收率最高,为98.51%。VO(OH)2由直径为50~200 nm球状结构组成,将其用硫酸溶解可得蓝色VOSO4溶液,烘干结晶后得到平均直径为5 μm的固体VOSO4晶体,产物品质符合国标二级标准。该研究为利用钒渣钠化焙烧浸出液原位制备VOSO4提供了前期试验基础。
  • 图  1  偏钒酸钠制备VOSO4工艺流程

    Figure  1.  Process flow chart of preparing VOSO4 with sodium metavanadate

    图  2  不同还原条件对钒回收率的影响

    Figure  2.  Effects of different reduction conditions on vanadium recovery

    图  3  不同亚硫酸钠用量对钒回收率的影响

    Figure  3.  Effect of different sodium sulfite dosage on vanadium recovery rate

    图  4  不同沉淀条件对钒回收率的影响

    Figure  4.  Effects of different precipitation conditions on vanadium recovery rate

    图  5  偏钒酸钠为钒源所得VO(OH)2的FTIR表征

    Figure  5.  FTIR diagram of VO(OH)2 obtained from sodium metavanadate as vanadium source

    图  6  偏钒酸钠为钒源所得VO(OH)2的SEM-EDS表征

    (a)10 000倍;(b)30 000倍;(c) EDS; (d) EDS结果分析

    Figure  6.  SEM-EDS diagram of VO(OH)2 obtained from sodium metavanadate as vanadium source

    图  7  中间产物VO(OH)2的TG-DTA曲线

    Figure  7.  TG-DTA curve of intermediate product VO(OH)2

    图  8  不同沉淀条件下VOSO4的XRD结果

    Figure  8.  XRD spectra of VOSO4 under different precipitation conditions

    图  9  偏钒酸钠为钒源所得VOSO4的SEM-EDS表征

    (a)2 000倍;(b)5 000倍;(c) EDS;(d) EDS结果分析

    Figure  9.  SEM-EDS diagrams of VOSO4 obtained from sodium metavanadate as vanadium source

    表  1  中间产物V离子和Na离子含量

    Table  1.   Content of V4+ and Na+ in intermediate products g/L

    V4+Na+
    洗涤前30.60.69
    洗涤后30.20.02
    下载: 导出CSV

    表  2  VOSO4产物主要离子含量

    Table  2.   Main ions content in VOSO4 product mg/L

    成分 V2O5 SO42− Na+
    国标二级 136500 220800 ≤200
    产物 136500 343400 166
    下载: 导出CSV
  • [1] Yang Baoxiang. Vanadium based material manufacture[M]. Beijing: Metallurgical Industry Press, 2014. (杨保祥. 钒基材料制造[M]. 北京: 冶金工业出版社, 2014.

    Yang Baoxiang. Vanadium based material manufacture[M]. Beijing: Metallurgical Industry Press, 2014.
    [2] Chen Housheng. Vanadium compounds. encyclopedia of chemical engineering vol. 4[M]. Beijing: Chemical Industry Press, 1993. (陈厚生. 钒化合物. 化工百科全书·第4卷[M]. 北京: 化学工业出版社, 1993.

    Chen Housheng. Vanadium compounds. encyclopedia of chemical engineering vol. 4[M]. Beijing: Chemical Industry Press, 1993.
    [3] Zhou Zheng. Preparation of electrolyte for vanadium battery with energy storage[J]. Journal of Chengdu Electronic Mechanical College, 2009, 12(2):29-32. (周筝. 储能钒电池电解液制备[J]. 成都电子机械高等专科学校学报, 2009, 6.

    Zhou Zheng. Preparation of electrolyte for vanadium battery with energy storage[J]. Journal of Chengdu Electronic Mechanical College, 2009, 12(2): 29-32.
    [4] Cui Yanhua, Meng Fanming. Research on the vanadium ion redox flow battery[J]. Power Technology, 2000,24(6):356-358.
    [5] Rychcik M, Skyllas-Kazacos M. Characteristics of new all-vanadium redox flow battery[J]. Power Sources, 1988,22(1):59-67. doi: 10.1016/0378-7753(88)80005-3
    [6] Liu Dafan, Li Xiaolei, Guo Xifeng, et al. Current development status of all vanadium redox flow battery[J]. Inorganic Chemical Industry, 2010,42(8):4-6.
    [7] Li L, Kim S, Wang W, et al. A stable vanadium redox-flow battery with high energy density for large-scale energy storage[J]. Advanced Energy Materials, 2011,1(3):394-400. doi: 10.1002/aenm.201100008
    [8] Li Linde, Zhang Bo, Huang Kelong, et al. Preparation of electrolyte for vanadium ion flow battery by electrolysis: China, CN1598063[P]. 2005-03-23. (李林德, 张波, 黄可龙, 等. 全钒离子液流电池电解液的电解制备方法: 中国,CN1598063[P]. 2005-03-23.

    Li Linde, Zhang Bo, Huang Kelong, et al. Preparation of electrolyte for vanadium ion flow battery by electrolysis: China, CN1598063[P]. 2005-03-23.
    [9] Skyllas Kazacos M, Kazacos G, Poon G, et al. Recent advanced with UNSW vanadium-based redox flow batteries[J]. International Journal of Energy Research, 2010,34(2):182-189. doi: 10.1002/er.1658
    [10] Chang Fang, Meng Fanming, Lu Ruisheng. Development and prospect of the vanadium electrolyte for the vanadium battery[J]. Power Technology, 2006,10:860-862.
    [11] Luo Dongmei. Study on vanadium redox flow battery[D]. Shenyang: Northeast University, 2005.
    [12] Yan Jun, Zhao Lifei. Application of energy storage technology to distributed generation[J]. North China Electric Power Technology, 2006,10:55-57.
    [13] Zhao Ping, Zhang Huamin, Zhou Hantao, et al. Research outline of redox flow cells for energy storage in China[J]. Power Technology, 2005,10(2):96-99.
    [14] Yang Lihua. Preparation and mechanism of high purity vanadium sulfate for vanadium battery by solvent extraction[D]. Guangzhou: Guangdong University of Technology, 2021. (杨莉花.基于溶剂萃取法制备钒电池用高纯硫酸氧钒与机理研究[D]. 广州:广东工业大学, 2021.

    Yang Lihua. Preparation and mechanism of high purity vanadium sulfate for vanadium battery by solvent extraction[D]. Guangzhou: Guangdong University of Technology, 2021.
    [15] Li Xiaoshan. Study on stable high concentration electrolyte for all vanadium redox flow battery[D]. Beijing:Beijing University of Chemical Technology, 2012. (李小山. 全钒液流电池用稳定的高浓度电解液研究[D]. 北京:北京化工大学, 2012.

    Li Xiaoshan. Study on stable high concentration electrolyte for all vanadium redox flow battery[D]. Beijing:Beijing University of Chemical Technology, 2012.
    [16] Liu Cong. Preparation of vanadium battery electrolyte by short process extraction from vanadium precipitation wastewater[D]. Wuhan: Wuhan University of Science and Technology, 2020. (刘聪. 从沉钒废水中萃取法短流程制备钒电池电解液的研究[D]. 武汉:武汉科技大学, 2020.

    Liu Cong. Preparation of vanadium battery electrolyte by short process extraction from vanadium precipitation wastewater[D]. Wuhan: Wuhan University of Science and Technology, 2020.
    [17] Li Dan. Preparation of high purity vanadium oxysulfate from vanadium-containing chloride solution by short process[D]. Beijing: University of Chinese Academy of Sciences (Institute of Process Engineering), 2017. (李丹. 含钒氯化物溶液短流程制备高纯硫酸氧钒研究[D]. 北京:中国科学院大学 (过程工程研究所), 2017.

    Li Dan. Preparation of high purity vanadium oxysulfate from vanadium-containing chloride solution by short process[D]. Beijing: University of Chinese Academy of Sciences (Institute of Process Engineering), 2017.
    [18] Skyllas kazacos M, Rychcik M, Robins R G, et al. New all-vanadium redox flow cell[J]. Journal of the Electrochemical Society, 1986,133(5):1057. doi: 10.1149/1.2108706
    [19] Kazacos M S, Kazacos M, Samad M S, et al. Stabilized electrolyte solution methods of preparation thereof and redox cells and batteries containing stabilized electrolyte solution: AU, EP0729648B1[P]. 2003-04-02.
    [20] Johnson D A, Reid M A. Chemical and electrochemical behavior of the Cr(Ⅲ)/Cr(Ⅱ) half-cell in the ion-chemigum redox energy store system[J]. Electro Chem Soc, 1985(132):1058-1064.
    [21] Guo Qiusong, Liu Zhiqiang, Zhu Wei, et al. Preparation of ultra-pure vanadium oxysulfate by D2EHPA/TBP synergistic extraction from iron, chromium and manganese[J]. Materials Research and Application, 2013,7(2):77-81. (郭秋松, 刘志强, 朱薇, 等. D2EHPA/TBP协同萃取除铁铬锰制备超纯硫酸氧钒[J]. 材料研究与应用, 2013,7(2):77-81. doi: 10.3969/j.issn.1673-9981.2013.02.003

    Guo Qiusong, Liu Zhiqiang, Zhu Wei, et al. Preparation of ultra-pure vanadium oxysulfate by D2EHPA/TBP synergistic extraction from iron, chromium and manganese[J]. Materials Research and Application, 2013, 7(2): 77-81. doi: 10.3969/j.issn.1673-9981.2013.02.003
    [22] Chen Meng, Zhang Yifu, Liu Yanyan, et al. A novel intercalation pseudocapacitive electrode material: VO(OH)2/CNT composite with cross-linked structure for high performance flexible symmetric supercapacitors[J]. Applied Surface Science, 2019, 492: 746-755.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  487
  • HTML全文浏览量:  126
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-09
  • 刊出日期:  2024-08-30

目录

    /

    返回文章
    返回