中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TC4 ELI钛合金高品质球形粉末的制备

陈光润 马兰 杨绍利 肖建 汪强兵

陈光润, 马兰, 杨绍利, 肖建, 汪强兵. TC4 ELI钛合金高品质球形粉末的制备[J]. 钢铁钒钛, 2024, 45(4): 23-28. doi: 10.7513/j.issn.1004-7638.2024.04.004
引用本文: 陈光润, 马兰, 杨绍利, 肖建, 汪强兵. TC4 ELI钛合金高品质球形粉末的制备[J]. 钢铁钒钛, 2024, 45(4): 23-28. doi: 10.7513/j.issn.1004-7638.2024.04.004
Chen Guangrun, Ma Lan, Yang Shaoli, Xiao Jian, Wang Qiangbing. Preparation of high quality spherical powder of TC4 ELI titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 23-28. doi: 10.7513/j.issn.1004-7638.2024.04.004
Citation: Chen Guangrun, Ma Lan, Yang Shaoli, Xiao Jian, Wang Qiangbing. Preparation of high quality spherical powder of TC4 ELI titanium alloy[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 23-28. doi: 10.7513/j.issn.1004-7638.2024.04.004

TC4 ELI钛合金高品质球形粉末的制备

doi: 10.7513/j.issn.1004-7638.2024.04.004
基金项目: 四川省重点研发项目(编号:2020YFG0215)。
详细信息
    作者简介:

    陈光润,2000年出生,女,四川攀枝花人,硕士研究生,主要从事钒钛新材料新技术研究,E-mail:1148077417@qq.com

    通讯作者:

    马兰,1972年出生,女,四川资阳人,教授,主要从事钒钛新材料新技术及钒钛资源综合利用研究,E-mail: hudie5656@163.com

  • 中图分类号: TF823

Preparation of high quality spherical powder of TC4 ELI titanium alloy

  • 摘要: 以Ti6Al4V ELI(TC4 ELI)钛合金棒料为原料,采用等离子旋转电极雾化法制备TC4 ELI球形粉末,研究了电流和电极转速对粉末粒度分布及粉末特性的影响,利用扫描电镜(SEM)对粉体形貌进行了观察。结果表明:电流保持600 A不变时,随着电极转速提高,53~106 µm TC4 ELI粉末收得率增大;当电极转速为44000 r/min时,随着电流的增大,粒径<106 µm的粉末收得率略有增加,所得粉末松装密度在2.59~2.72 g/cm3范围内,振实密度为3.0 g/cm3,氧含量(质量分数)在560×10-6~750 ×10-6,流动性(50 g计)为30.6~35.7 s;粉末成球率高、球形度好,边缘光滑无杂质,球形度>90%。
  • 图  1  TC4 ELI合金棒料随机取样不同部位的显微组织

    Figure  1.  Random sampling of microstructure in different parts of TC4 ELI alloy bars

    图  2  600 A下不同转速所得粉末粒度分布

    Figure  2.  Particle size distribution of powder obtained at different rotation speeds and 600 A

    图  3  不同电流所得粉末粒度分布

    Figure  3.  Particle size distribution of powders obtained from different currents

    图  4  TC4 ELI粉末密度、氧含量、流动性和<106 μm的粉末收得率

    (a)(c)不同转速下;(b)(d)不同电流下

    Figure  4.  TC4 ELI powder density, oxygen content, flowability, and the yield below 106 μm under different currents and speeds

    图  5  TC4 ELI粉末形貌

    Figure  5.  TC4 ELI powder morphology

    (a) (b) 600 A, 44000 r/min; (c) (d) 600 A, 36000 r/min

    表  1  TC4 ELI钛合金棒材化学成分

    Table  1.   Chemical composition of TC4 ELI titanium alloy bar %

    AlFeVNOTi
    5.920.0214.100.0070.044余量
    下载: 导出CSV
  • [1] Han Zhirong, Lin Yun, Liu Jie. Preparation of TC4 alloy powder for laser 3D printing[J]. Enterprise Science and Technology and Development, 2019(1):57-59. (韩志嵘, 林芸, 刘洁. 激光3D打印用TC4合金粉末的制备研究[J]. 企业科技与发展, 2019(1):57-59. doi: 10.3969/j.issn.1674-0688.2019.01.027

    Han Zhirong, Lin Yun, Liu Jie. Preparation of TC4 alloy powder for laser 3D printing[J]. Enterprise Science and Technology and Development, 2019(1): 57-59. doi: 10.3969/j.issn.1674-0688.2019.01.027
    [2] Chen Yingying, Xiao Zhiyu, Li Shangkui, et al. The preparation technology and research progress of metal powder for 3D printing[J]. Powder Metallurgy Industry, 2018,28(4):56-61. (陈莹莹, 肖志瑜, 李上奎, 等. 3D打印用金属粉末的制备技术及其研究进展[J]. 粉末冶金工业, 2018,28(4):56-61.

    Chen Yingying, Xiao Zhiyu, Li Shangkui, et al. The preparation technology and research progress of metal powder for 3D printing[J]. Powder Metallurgy Industry, 2018, 28(4): 56-61.
    [3] Liu Chang, Li Hui, Zhang Hanxin, et al. Research progress and development trend of titanium powder preparation process[J]. Rare Metals and Cemented Carbides, 2020,48(1):35-39. (刘畅, 李慧, 张汉鑫, 等. 钛粉制备工艺的研究进展及发展趋势[J]. 稀有金属与硬质合金, 2020,48(1):35-39.

    Liu Chang, Li Hui, Zhang Hanxin, et al. Research progress and development trend of titanium powder preparation process[J]. Rare Metals and Cemented Carbides, 2020, 48(1): 35-39.
    [4] Li An, Liu Shifeng, Wang Bojian, et al. Research progress of metal powder preparation technology for 3D printing[J]. Journal of Iron and Steel Research, 2018,30(6):419-426. (李安, 刘世锋, 王伯健, 等. 3D打印用金属粉末制备技术研究进展[J]. 钢铁研究学报, 2018,30(6):419-426.

    Li An, Liu Shifeng, Wang Bojian, et al. Research progress of metal powder preparation technology for 3D printing[J]. Journal of Iron and Steel Research, 2018, 30(6): 419-426.
    [5] Sui Yi, Feng Yicheng, Zhang Yu, et al. Research status of plasma rotating electrode atomization[J]. Heilongjiang Science, 2023,14(14):61-63. (隋毅, 冯义成, 张煜, 等. 等离子旋转电极雾化制粉研究现状[J]. 黑龙江科学, 2023,14(14):61-63. doi: 10.3969/j.issn.1674-8646.2023.14.016

    Sui Yi, Feng Yicheng, Zhang Yu, et al. Research status of plasma rotating electrode atomization[J]. Heilongjiang Science, 2023, 14(14): 61-63. doi: 10.3969/j.issn.1674-8646.2023.14.016
    [6] Tang Huiping. Research progress on engineering application technology of powder bed electron beam 3D printing Ti-6Al-4V alloy[J]. China Material Progress, 2020,39(Z1):551-558. (汤慧萍. 粉末床电子束3D打印Ti-6Al-4V合金的工程应用技术研究进展[J]. 中国材料进展, 2020,39(Z1):551-558. doi: 10.7502/j.issn.1674-3962.202006031

    Tang Huiping. Research progress on engineering application technology of powder bed electron beam 3D printing Ti-6Al-4V alloy[J]. China Material Progress, 2020, 39(Z1): 551-558. doi: 10.7502/j.issn.1674-3962.202006031
    [7] Li Xiaohui, Chen Binke, Feng Zhihua, et al. Preparation and characterization of tungsten powder by plasma rotating electrode atomization[J]. Powder Metallurgy Industry, 2022,32(1):15-19. (李晓辉, 陈斌科, 凤治华, 等. 等离子旋转电极雾化制备钨粉及性能表征[J]. 粉末冶金工业, 2022,32(1):15-19.

    Li Xiaohui, Chen Binke, Feng Zhihua, et al. Preparation and characterization of tungsten powder by plasma rotating electrode atomization[J]. Powder Metallurgy Industry, 2022, 32(1): 15-19.
    [8] Lei Nanzhi. Research on the process and properties of spherical metal powder prepared by plasma rotating electrode atomization [D]. Xi 'an : Xi 'an University of Technology, 2019. (雷囡芝. 等离子旋转电极雾化法制备球形金属粉末的工艺及性能研究[D]. 西安: 西安理工大学, 2019.

    Lei Nanzhi. Research on the process and properties of spherical metal powder prepared by plasma rotating electrode atomization [D]. Xi 'an : Xi 'an University of Technology, 2019.
    [9] Tang Huiping. Research progress of plasma rotating electrode milling technology [J]. Powder Metallurgy Technology, 2023, 41(1): 2-11 , 54. (汤慧萍. 等离子旋转电极制粉技术研究进展[J]. 粉末冶金技术, 2023, 41(1): 2-11, 54.

    Tang Huiping. Research progress of plasma rotating electrode milling technology [J]. Powder Metallurgy Technology, 2023, 41(1): 2-11 , 54.
    [10] Yang Xingbo, Zhu Jilei, Chen Binke, et al. Research status of plasma rotating electrode atomization technology and powder particle size control[J]. Powder Metallurgy Industry, 2022,32(2):90-95. (杨星波, 朱纪磊, 陈斌科, 等. 等离子旋转电极雾化技术及粉末粒度控制研究现状[J]. 粉末冶金工业, 2022,32(2):90-95.

    Yang Xingbo, Zhu Jilei, Chen Binke, et al. Research status of plasma rotating electrode atomization technology and powder particle size control[J]. Powder Metallurgy Industry, 2022, 32(2): 90-95.
    [11] Hou Weiqiang, Meng Jie, Liang Jingjing, et al. Preparation technology and research progress of superalloy powder for additive manufacturing[J]. Powder Metallurgy Technology, 2022, 40 ( 2 ) : 131-138, 144. (侯维强, 孟杰, 梁静静, 等. 增材制造用高温合金粉末制备技术及研究进展[J]. 粉末冶金技术, 2022, 40(2): 131-138, 144.

    Hou Weiqiang, Meng Jie, Liang Jingjing, et al. Preparation technology and research progress of superalloy powder for additive manufacturing[J]. Powder Metallurgy Technology, 2022, 40 ( 2 ) : 131-138, 144.
    [12] Wang Hua, Bai Ruimin, Zhou Xiaoming, et al. Comparative analysis of Inconel 71 powder prepared by PREP method and AA method[J]. New Technol New Prod China, 2019, (19): 1-4. (王华, 白瑞敏, 周晓明, 等. PREP法和AA法制取Inconel 718粉末对比分析[J]. 中国新技术新产品, 2019, (19): 1-4.

    Wang Hua, Bai Ruimin, Zhou Xiaoming, et al. Comparative analysis of Inconel 71 powder prepared by PREP method and AA method[J]. New Technol New Prod China, 2019, (19): 1-4.
    [13] Liu Shaowei, Duan Wangchun, Dong Bingbin. Effect of PREP process parameters on the properties of AlSi10Mg aluminum alloy powder for 3D printing[J]. Non Ferrous Metals Engineering, 2019,9(9):45-50. (刘少伟, 段望春, 董兵斌. PREP工艺参数对3D打印用AlSi10Mg铝合金粉末性能的影响[J]. 有色金属工程, 2019,9(9):45-50.

    Liu Shaowei, Duan Wangchun, Dong Bingbin. Effect of PREP process parameters on the properties of AlSi10Mg aluminum alloy powder for 3D printing[J]. Non Ferrous Metals Engineering, 2019, 9(9): 45-50.
    [14] Hsu T I,Wei C M,Wu L D, et al. Nitinol powders generate from plasma rotation electrode process provide clean powder for biomedical devices used with suitable size, spheroid surface and pure composition[J]. Scientific Reports, 2018,8:13776. doi: 10.1038/s41598-018-32101-1
    [15] Tang Junjie, Nie Yan, Lei Qian, et al. Characteristics and atomization behavior of Ti-6Al-4V powder produced by plasma rotating electrode process[J]. Advanced Powder Technology: The Internation Journal of the Society of Powder Technology, Japan, 2019,30(10):2330-2337.
    [16] Champagne B, Angers R. REP atomization mechanisms[J]. International Journal of Powder Metallurgy, 1984,16(3):125.
    [17] Xie Bo, Li Jianjun, Qiao Zhonglu. Oxygenation of TC4 powder for 3D printing by electrode induction gas atomization[J]. Vacuum, 2020,57(6):80-83. (谢波, 李建军, 乔忠路. 电极感应气雾化法制备3D打印用TC4粉末增氧量研究[J]. 真空, 2020,57(6):80-83.

    Xie Bo, Li Jianjun, Qiao Zhonglu. Oxygenation of TC4 powder for 3D printing by electrode induction gas atomization[J]. Vacuum, 2020, 57(6): 80-83.
    [18] Wang Dongjun, Zhou Rui, Shen Jun. Solidification characteristics of rapidly solidified water atomized high strength steel powder[J]. Acta Metallurgica Sinica, 2008,44(2):159-164. (王东君, 周瑞, 沈军. 快速凝固水雾化高强钢粉末的凝固特征[J]. 金属学报, 2008,44(2):159-164. doi: 10.3321/j.issn:0412-1961.2008.02.007

    Wang Dongjun, Zhou Rui, Shen Jun. Solidification characteristics of rapidly solidified water atomized high strength steel powder[J]. Acta Metallurgica Sinica, 2008, 44(2): 159-164. doi: 10.3321/j.issn:0412-1961.2008.02.007
    [19] Wang Qi, Li Shenggang, Lü Hongjun, et al. Research on high quality titanium alloy production by atomization technology[J]. Titanium Industry Progress, 2010,27(5):16-18. (王琪,李圣刚,吕宏军,等. 雾化法制备高品质钛合金粉末技术研究[J]. 钛工业进展, 2010,27(5):16-18.

    Wang Qi, Li Shenggang, Lü Hongjun, et al. Research on high quality titanium alloy production by atomization technology[J]. Titanium Industry Progress, 2010, 27(5): 16-18.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  107
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-07
  • 刊出日期:  2024-08-30

目录

    /

    返回文章
    返回