中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

工业纯钛室温双轴拉伸力学行为研究

苗自豪 常乐 周昌玉 贺小华

苗自豪, 常乐, 周昌玉, 贺小华. 工业纯钛室温双轴拉伸力学行为研究[J]. 钢铁钒钛, 2024, 45(4): 41-47. doi: 10.7513/j.issn.1004-7638.2024.04.007
引用本文: 苗自豪, 常乐, 周昌玉, 贺小华. 工业纯钛室温双轴拉伸力学行为研究[J]. 钢铁钒钛, 2024, 45(4): 41-47. doi: 10.7513/j.issn.1004-7638.2024.04.007
Miao Zihao, Chang Le, Zhou Changyu, He Xiaohua. Study on the biaxial tensile behavior of commercial pure titanium at room temperature[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 41-47. doi: 10.7513/j.issn.1004-7638.2024.04.007
Citation: Miao Zihao, Chang Le, Zhou Changyu, He Xiaohua. Study on the biaxial tensile behavior of commercial pure titanium at room temperature[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 41-47. doi: 10.7513/j.issn.1004-7638.2024.04.007

工业纯钛室温双轴拉伸力学行为研究

doi: 10.7513/j.issn.1004-7638.2024.04.007
基金项目: 国家重点攻关项目(2023ZY01001); 国家自然科学基金项目(51975271,51905260)。
详细信息
    作者简介:

    苗自豪,1996年出生,男,河南项城人,硕士研究生,主要从事钛合金力学行为研究,E-mail:18851768039@163.com

    通讯作者:

    常乐,1991年出生,男,江苏泰兴人,副研究员,主要从事结构完整性评价,E-mail:Chellechang@163.com

  • 中图分类号: TF823

Study on the biaxial tensile behavior of commercial pure titanium at room temperature

  • 摘要: 采用十字形试样对工业纯钛板材进行了双轴拉伸试验,利用数字图像相关方法(Digital Image Correlation, DIC)捕获应变响应,探讨了双轴拉伸应力状态对力学性能的影响。与单轴力学性能相比,双轴加载下材料强度明显提升,当XY两轴加载速率相等时,材料的屈服强度及抗拉强度最高。进一步利用背向散射衍射技术(Electron Back Scatter Diffraction, EBSD)分析双轴载荷比对孪晶行为的影响。沿轧制方向(RD)和横向(TD)单向加载时,孪晶体积分数较小,而双轴载荷下有较多孪晶,在等比载荷时有最大的孪晶体积分数,且当横向载荷大于轧制方向载荷时,拉伸孪晶体积分数高于压缩孪晶体积分数。
  • 图  1  初始材料EBSD数据

    (a) 晶粒取向分布;(b) 极图

    Figure  1.  EBSD data of the as-received material

    图  2  十字形试样尺寸(单位:mm)

    Figure  2.  Geometry of the cruciform specimen

    图  3  双轴拉伸试验及DIC系统

    (a) IPBF-5000;(b) 相机;(c) 卤素灯

    Figure  3.  Biaxial tensile testing and DIC system

    图  4  等效应变及裂纹路径

    (a) 弹性阶段等效应变; (b) 塑性阶段等效应变; (c) 等比例载荷试样裂纹路径

    Figure  4.  Equivalent strain and crack path

    图  5  不同载荷比下真实应力-应变曲线

    Figure  5.  True stress-true strain curve under different loading ratios

    (a) RD;(b) TD

    图  6  不同载荷比下材料的屈服强度

    Figure  6.  Yield strength of the material under different loading ratios

    图  7  不同载荷条件下的试样晶界

    Figure  7.  Band contrast map with superimposed grain boundaries under different loading conditions

    (a) $ {F}_{\rm{RD}} $:$ {F}_{\rm{TD}} $=4:0; (b) $ {F}_{\rm{RD}} $:$ {F}_{\rm{TD}} $=4:2; (c) $ {F}_{\rm{RD}} $:$ {F}_{\rm{TD}} $=4:4; (d) $ {F}_{\rm{RD}} $:$ {F}_{\rm{TD}} $=2:4 ;(e) $ {F}_{\rm{RD}} $:$ {F}_{\rm{TD}} $=0:4

    图  8  孪晶统计分析结果

    (a) 总的孪晶体积分数;(b) 压缩孪晶体积分数;(c) 拉伸孪晶体积分数

    Figure  8.  Statistics analysis results of twins

    图  9  不同载荷比变形后极图

    Figure  9.  Pole figure maps after deformation with different loading ratios

    (a) $ {F}_{{\mathrm{RD}}} $:$ {F}_{{\mathrm{TD}}} $=4:0; (b) $ {F}_{{\mathrm{RD}}} $:$ {F}_{{\mathrm{TD}}} $=4:2; (c) $ {F}_{{\mathrm{RD}}} $:$ {F}_{{\mathrm{TD}}} $=4:4; (d) $ {F}_{{\mathrm{RD}}} $:$ {F}_{{\mathrm{TD}}} $=2:4; (e) $ {F}_{{\mathrm{RD}}} $:$ {F}_{{\mathrm{TD}}} $=0:4

    表  1  TA2的化学成分

    Table  1.   Chemical composition of TA2 %

    FeCNHOTi
    0.0340.0180.0110.0020.12799.808
    下载: 导出CSV
  • [1] Nedunchezhian Srinivasan, Velmurugan R, Ravi Kumar, et al. Deformation behavior of commercially pure (CP) titanium under equi-biaxial tension[J]. Materials Science & Engineering A, 2016, 674:540-551.
    [2] Hannon Alan, Tiernan Peter. A review of planar biaxial tensile test systems for sheet metal[J]. Journal of Materials Processing Tech, 2007, 198(1):1-13.
    [3] Wagner F, Bozzolo N, Landuyt O Van, et al. Evolution of recrystallisation texture and microstructure in low alloyed titanium sheets[J]. Acta Materialia, 2002,50:1245-1259. doi: 10.1016/S1359-6454(01)00427-X
    [4] Bozzolo N, Dewobroto N, Grosdidier T, et al. Texture evolution during grain growth in recrystallized commercially pure titanium[J]. Materials Science and Engineering: A, 2005,397(1-2):346-355. doi: 10.1016/j.msea.2005.02.049
    [5] Chun Y B, Yu S H, Semiatin S L, et al. Effect of deformation twinning on microstructure and texture evolution during cold rolling of CP-titanium[J]. Materials Science and Engineering: A, 2005,398:209-219. doi: 10.1016/j.msea.2005.03.019
    [6] Yazar K U, Mishra S, Kumar L, et al. Texture induced planar anisotropy of dwell fatigue response in titanium: Insights from experiments and crystal plasticity simulations[J]. International Journal of Plasticity, 2022,152:103-140.
    [7] Chang Le, Miao Zihao, Zhou Binbin, et al. Understanding the anisotropic tensile deformation behavior of commercially pure titanium by experiments and crystal plasticity simulations[J]. Materials Letters, 2023,339:134095. doi: 10.1016/j.matlet.2023.134095
    [8] Meng Jimkui, Liu Li, Jiang Jiantang, et al. The role of biaxial stress ratio on the mechanical behavior and deformation mechanisms in HCP α-Ti[J]. Materials Science and Engineering: A, 2023,862:144452. doi: 10.1016/j.msea.2022.144452
    [9] Fu Yuanjie, Cheng Yao, Cui Yun, et al. Deformation mechanism of commercially pure titanium under biaxial loading at ambient and elevated temperatures[J]. Journal of Materials Science& Technology, 2022,126:237-251.
    [10] Sumit Bahl, Satyam Suwas, Kaushik Chatterjee. The importance of crystallographic texture in the use of titanium as an orthopedic biomaterial[J]. Rsc Advances, 2014, 4(72): 38078–38087.
    [11] Zhu Zhikang. Investigation on tensile mechanical behavior of commercial pure titanium TA2 under biaxial loading[D]. Nanjing: Nanjing Tech University, 2020. (朱志康. 双轴载荷下工业纯钛TA2拉伸力学行为研究[D]. 南京: 南京工业大学, 2020.

    Zhu Zhikang. Investigation on tensile mechanical behavior of commercial pure titanium TA2 under biaxial loading[D]. Nanjing: Nanjing Tech University, 2020.
    [12] Zhu Zhikang, Lu Zheng, Zhang Peng, et al. Optimal design of a miniaturized cruciform specimen for biaxial testing of TA2 alloys[J]. Metals, 2019,9(8):823-841. doi: 10.3390/met9080823
    [13] Peters W H, Ranson W F. Digital imaging techniques in experimental stress analysis[J]. Optical Engineering, 1982,21(3):427-431.
    [14] Smits A, Hemelrijck D V, Philippidi T P, et al. Design of a cruciform specimen for biaxial testing of fibre reinforced composite laminates[J]. Composites Science and Technology, 2006,66(7-8):964-975. doi: 10.1016/j.compscitech.2005.08.011
    [15] Hannon A, Tiernan P. A review of planar biaxial tensile test systems for sheet metal[J]. Journal of Materials Processing Technology, 2008,198(1-3):1-13. doi: 10.1016/j.jmatprotec.2007.10.015
    [16] Nizhnik S B, Dmitrieva E A. Phase Effect on deformation anisotropy of strength and fracture resistance characteristics of titanium alloys[J]. Strength of Materials, 2014,46:785-793. doi: 10.1007/s11223-014-9612-0
    [17] Li Gangling, Li Jinwei, Li Jinyu. Stress measurement of titanium pressure vessels[J]. Pressure Vessels Piping, 1996,67:41-44. doi: 10.1016/0308-0161(94)00150-2
    [18] Cheng Yao. Research on deformation behavior of hcp metals under biaxial tension[D]. Chongqing: Chongqing University, 2021.(成姚.密排六方结构金属双轴拉伸变形行为研究[D]. 重庆:重庆大学,2021.

    Cheng Yao. Research on deformation behavior of hcp metals under biaxial tension[D]. Chongqing: Chongqing University, 2021.(成姚.密排六方结构金属双轴拉伸变形行为研究[D]. 重庆: 重庆大学, 2021.)
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  386
  • HTML全文浏览量:  117
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-04
  • 刊出日期:  2024-08-30

目录

    /

    返回文章
    返回