中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

堆积方向对激光选区熔化TC4合金缺口件局部循环塑性行为的影响

王志强 李建 赵询 赵雪同 徐英东 唐明扬 刘庆 葛峻铭 肖敏

王志强, 李建, 赵询, 赵雪同, 徐英东, 唐明扬, 刘庆, 葛峻铭, 肖敏. 堆积方向对激光选区熔化TC4合金缺口件局部循环塑性行为的影响[J]. 钢铁钒钛, 2024, 45(4): 68-75. doi: 10.7513/j.issn.1004-7638.2024.04.011
引用本文: 王志强, 李建, 赵询, 赵雪同, 徐英东, 唐明扬, 刘庆, 葛峻铭, 肖敏. 堆积方向对激光选区熔化TC4合金缺口件局部循环塑性行为的影响[J]. 钢铁钒钛, 2024, 45(4): 68-75. doi: 10.7513/j.issn.1004-7638.2024.04.011
Wang Zhiqiang, Li Jian, Zhao Xun, Zhao Xuetong, Xu Yingdong, Tang Mingyang, Liu Qing, Ge Junming, Xiao Min. Influence of stacking direction on the local cyclic plastic behavior of selective laser melted TC4 alloy notched parts[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 68-75. doi: 10.7513/j.issn.1004-7638.2024.04.011
Citation: Wang Zhiqiang, Li Jian, Zhao Xun, Zhao Xuetong, Xu Yingdong, Tang Mingyang, Liu Qing, Ge Junming, Xiao Min. Influence of stacking direction on the local cyclic plastic behavior of selective laser melted TC4 alloy notched parts[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 68-75. doi: 10.7513/j.issn.1004-7638.2024.04.011

堆积方向对激光选区熔化TC4合金缺口件局部循环塑性行为的影响

doi: 10.7513/j.issn.1004-7638.2024.04.011
基金项目: 中国博士后基金面上项目(2020M681496);国家自然科学基金项目(52105149)。
详细信息
    作者简介:

    王志强,1985年出生,男,江苏阜宁人,学士,高级工程师,主要研究方向:金属材料化学分析、性能测试方法等,E-mail:wangzhiqiang@sys.ac.cn

    通讯作者:

    李建,1989年出生,男,江苏扬州人,博士,讲师,主要研究方向:结构完整性评估、金属材料3D打印、金属材料疲劳与断裂、光测试验力学,E-mail:lj66@ujs.edu.cn

  • 中图分类号: TF823,TG665

Influence of stacking direction on the local cyclic plastic behavior of selective laser melted TC4 alloy notched parts

  • 摘要: 通过数字图像相关技术从宏观塑性变形方面研究了堆积方向对激光选区熔化(SLM)TC4合金缺口件局部循环塑性行为的影响。结果表明:缺口附近的塑性变形受堆积方向和缺口半径的影响,进而影响缺口件的疲劳寿命。缺口根部的棘轮应变及其应变率随堆积方向改变(0°至90°)而降低,同时也随缺口半径的增加而降低。与缺口半径相比,棘轮应变及应变率和疲劳寿命对堆积方向敏感性更低。研究结果为SLM构件的疲劳设计提供了一定的理论参考。
  • 图  1  TC4钛合金金相组织

    Figure  1.  Metallographic structure of TC4

    图  2  U型缺口试样示意(r=0.2、1.2 mm)

    Figure  2.  Schematic diagram of U-shaped notch specimen (r=0.2, 1.2 mm)

    图  3  疲劳试验装置及试件应变云图

    (a)疲劳试验设备; (b)DIC测试散斑试样; (c)应变云图

    Figure  3.  Experimental setup and strain cloud diagram of specimens

    图  4  缺口半径r=0.2 mm,D1、D2、D3堆积方向的棘轮应变(εr)及应变幅值(εa)随循环周次(N)变化曲线

    Figure  4.  The curves of ratcheting strain(εr) and strain amplitude(εa) in D1, D2, and D3 stacking directions variation with cycle number (N) under notch radius r=0.2 mm

    (a)D1; (b)D2; (c)D3

    图  5  缺口半径r=1.2 mm,D1、D2、D3堆积方向的棘轮应变(εr)及应变幅值(εa)随循环周次(N)变化曲线

    Figure  5.  The curves of ratcheting strain(εr) and strain amplitude(εa) in D1, D2 and D3 stacking directions variation with cycle number (N) under notch radius r=1.2 mm

    (a)D1; (b)D2 ;(c)D3

    图  6  N=200次时,两种缺口半径不同堆积方向的棘轮应变(εr)和应变幅值(εa)

    Figure  6.  Ratcheting strain(εr) and strain amplitude(εa) of two different notch radii with different stacking directions at N=200 cycles

    (a)r=0.2 mm ;(b)r=1.2 mm

    图  7  N=200次时,三种堆积方向不同缺口半径的棘轮应变(εr)和应变幅值(εa)

    Figure  7.  Ratcheting strain(εr) and strain amplitude(εa) of different notch radii in three stacking directions with N=200 cycles

    (a)D1; (b)D2; (c)D3

    图  8  N=200次时,两种缺口半径D1、D2、D3堆积方向的应变云图

    Figure  8.  Strain cloud maps of stacking direction for D1, D2, and D3 with N=200 cycles

    (a)D1 ;(b)D2; (c)D3

    图  9  距离缺口根部d=0.6 mm处(A点)不同堆积方向棘轮应变(εy)随循环周次(N)的变化

    Figure  9.  Ratcheting strain(εy) in different stacking directions at a distance of d=0.6 mm from the root of the notch (point A) Changes with cycle number (N)

    (a)r=0.2 mm ;(b)r=1.2 mm

    图  10  距离缺口根部d=0.6 mm处(A点)不同缺口半径棘轮应变(εy)随循环周次(N)的变化

    Figure  10.  Ratcheting strain(εy) at different notch radii at d=0.6 mm from the root of the notch (point A) changes with cycle number (N)

    (a)D1;(b)D2; (c)D3

    表  1  3D打印钛合金化学成分

    Table  1.   Chemical composition of 3D printed titanium alloy %

    TiAlVFeSiCNOH
    余量5.864.180.040.030.0130.00540.0990.0011
    下载: 导出CSV

    表  2  两种缺口半径不同堆积方向试样的疲劳寿命

    Table  2.   Fatigue life of two different notch radii with different stacking directions

    缺口半径r/mm堆积方向/(°)寿命N/周次
    0.2D1 0°538
    D2 45°290
    D3 90°215
    1.2D1 0°1790
    D2 45°1650
    D3 90°1040
    下载: 导出CSV
  • [1] Zhang Saibo, Zhao Junsong, Li Xiaohai, et al. Application and development prospect of metal 3D printing technology[J]. Equipment Manufacturing Technology, 2022(11):207-210. (张赛博, 赵俊淞, 李小海, 等. 金属3D打印技术的应用与发展前景[J]. 装备制造技术, 2022(11):207-210.

    Zhang Saibo, Zhao Junsong, Li Xiaohai, et al. Application and development prospect of metal 3D printing technology[J]. Equipment Manufacturing Technology, 2022(11): 207-210.
    [2] Wang Huaming. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014,35(10):2690-2698. (王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014,35(10):2690-2698.

    Wang Huaming. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690-2698.
    [3] Zhao Yong, Lin Feng, Tian Yinjun. Research on 3D printing manufacturing of TC4 components for solid rocket engines[J]. Journal of Propulsion Technology, 2022,43(12):276-284. (赵勇, 林峰, 田银俊. 固体火箭发动机TC4构件的3D打印制造研究[J]. 推进技术, 2022,43(12):276-284.

    Zhao Yong, Lin Feng, Tian Yinjun. Research on 3D printing manufacturing of TC4 components for solid rocket engines[J]. Journal of Propulsion Technology, 2022, 43(12): 276-284.
    [4] Qi Zhao, Wang Bin, Zhang Peng, et al. Effect of stress ratio on the steady-state fatigue crack expansion rate of defective selected laser melted TC4 alloy[J]. Acta Metallurgica Sinica, 2023,59(10):1411-1418. (戚钊, 王斌, 张鹏, 等. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023,59(10):1411-1418.

    Qi Zhao, Wang Bin, Zhang Peng, et al. Effect of stress ratio on the steady-state fatigue crack expansion rate of defective selected laser melted TC4 alloy[J]. Acta Metallurgica Sinica, 2023, 59(10): 1411-1418.
    [5] Zhan Z X. Fatigue life calculation for TC4-TC11 titanium alloy specimens fabricated by laser melting deposition[J]. Theoretical and Applied Fracture Mechanics, 2018,96:114-122. doi: 10.1016/j.tafmec.2018.04.009
    [6] Wang Yanrong, Li Hongxin, Yuan Shanhu, et al. Notched fatigue life prediction method considering stress gradient[J]. Journal of Aerospace Power, 2013,28(6):1208-1214. (王延荣, 李宏新, 袁善虎, 等. 考虑应力梯度的缺口疲劳寿命预测方法[J]. 航空动力学报, 2013,28(6):1208-1214.

    Wang Yanrong, Li Hongxin, Yuan Shanhu, et al. Notched fatigue life prediction method considering stress gradient[J]. Journal of Aerospace Power, 2013, 28(6): 1208-1214.
    [7] Liao D, Gao J W, Zhu S P, et al. Fatigue behaviour of EA4T notched specimens: experiments and predictions using the theory of critical distance[J]. Engineering Fracture Mechanics, 2023,286:109269. doi: 10.1016/j.engfracmech.2023.109269
    [8] Razavi S M J, Ferro P, Berto F. Fatigue assessment of Ti-6Al-4V circular notched specimens produced by selective laser melting[J]. Metals, 2017,7(8):291. doi: 10.3390/met7080291
    [9] Bao Zhenqiang. Effect of notch geometry to the high cycle fatigue strength of TC4 and prediction[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. (包珍强. 缺口对TC4高循环疲劳强度的影响及预测方法研究[D]. 南京: 南京航空航天大学, 2014.

    Bao Zhenqiang. Effect of notch geometry to the high cycle fatigue strength of TC4 and prediction[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.
    [10] Qian G, Li Y, Paolino D S, et al. Very-high-cycle fatigue behavior of Ti-6Al-4V manufactured by selective laser melting: Effect of build orientation[J]. International Journal of Fatigue, 2020,136:105628. doi: 10.1016/j.ijfatigue.2020.105628
    [11] Sun W, Huang W, Zhang W, et al. Effects of build direction on tensile and fatigue performance of selective laser melting Ti6Al4V titanium alloy[J]. International Journal of Fatigue, 2020,130:105260. doi: 10.1016/j.ijfatigue.2019.105260
    [12] Rans C, Michielssen J, Walker M, et al. Beyond the orthogonal: On the influence of build orientation on fatigue crack growth in SLM Ti-6Al-4V[J]. International Journal of Fatigue, 2018,116:344-354. doi: 10.1016/j.ijfatigue.2018.06.038
    [13] Edwards P, Ramulu M. Effect of build direction on the fracture toughness and fatigue crack growth in selective laser melted Ti-6Al-4V[J]. Fatigue & Fracture of Engineering Materials & Structures, 2015,38(10):1228-1236.
    [14] Shuai J G, Zhao J Q, Lei L P. Simple crack tip and stress intensity factor determination method for model I crack using digital image correlation[J]. Theoretical and Applied Fracture Mechanics, 2022,122:103621. doi: 10.1016/j.tafmec.2022.103621
    [15] Koko A, Earp P, Wigger T, et al. J-integral analysis: An EDXD and DIC comparative study for a fatigue crack[J]. International Journal of Fatigue, 2020, 134: 105474.
    [16] Zhu Z H, Luo S H, Feng Q S, et al. A hybrid DIC-EFG method for strain field characterization and stress intensity factor evaluation of a fatigue crack[J]. Measurement, 2020,154:107498. doi: 10.1016/j.measurement.2020.107498
    [17] Dai Qiao, He Jueheng, Zhou Jinyu, et al. Characterization of cyclic strain field at the fatigue crack tip of industrial pure titanium based on DIC and Irwin models[J]. Rare Metal Materials and Engineering, 2021,50(8):2815-2822. (代巧, 何爵亨, 周金宇, 等. 基于DIC与Irwin模型的工业纯钛疲劳裂纹尖端循环应变场表征[J]. 稀有金属材料与工程, 2021,50(8):2815-2822.

    Dai Qiao, He Jueheng, Zhou Jinyu, et al. Characterization of cyclic strain field at the fatigue crack tip of industrial pure titanium based on DIC and Irwin models[J]. Rare Metal Materials and Engineering, 2021, 50(8): 2815-2822.
    [18] Gonzales G L G, González J A O, Antunes F V, et al. Experimental determination of the reversed plastic zone size around fatigue crack using digital image correlation[J]. Theoretical and Applied Fracture Mechanics, 2023,125:103901. doi: 10.1016/j.tafmec.2023.103901
    [19] Fazzini M, Mistou S, Dalverny O, et al. Study of image characteristics on digital image correlation error assessment[J]. Optics and Lasers in Engineering, 2010,48(3):335-339. doi: 10.1016/j.optlaseng.2009.10.012
    [20] Sun Y F, Pang J H L. Study of optimal subset size in digital image correlation of speckle pattern images[J]. Optics and Lasers in Engineering, 2007,45(9):967-974. doi: 10.1016/j.optlaseng.2007.01.012
    [21] Mokhtarishirazabad M, Lopez Crespo P, Moreno B, et al. Evaluation of crack-tip fields from DIC data: A parametric study[J]. International Journal of Fatigue, 2016,89:11-19. doi: 10.1016/j.ijfatigue.2016.03.006
    [22] Kong W, Nian T, Yuan C. Development of a new ratcheting fatigue life prediction model of a nickel-based superalloy based on ratcheting strain rate[J]. Materials Letters, 2022,308:131071. doi: 10.1016/j.matlet.2021.131071
    [23] Yosibash Z, Mendelovich V, Gilad I, et al. Can the finite fracture mechanics coupled criterion be applied to V-notch tips of a quasi-brittle steel alloy[J]. Engineering Fracture Mechanics, 2022,269:108513. doi: 10.1016/j.engfracmech.2022.108513
    [24] Zhang P, He A N, Liu F, et al. Evaluation of low cycle fatigue performance of selective laser melted titanium alloy Ti-6Al-4V[J]. Metals, 2019,9(10):1041. doi: 10.3390/met9101041
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  181
  • HTML全文浏览量:  108
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-11
  • 刊出日期:  2024-08-30

目录

    /

    返回文章
    返回