中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钒钛球团矿熔滴过程中有价元素及物相的变化

谢洪恩 郑魁 黄楚 朱凤湘 刘娟

谢洪恩, 郑魁, 黄楚, 朱凤湘, 刘娟. 钒钛球团矿熔滴过程中有价元素及物相的变化[J]. 钢铁钒钛, 2024, 45(4): 105-112, 128. doi: 10.7513/j.issn.1004-7638.2024.04.015
引用本文: 谢洪恩, 郑魁, 黄楚, 朱凤湘, 刘娟. 钒钛球团矿熔滴过程中有价元素及物相的变化[J]. 钢铁钒钛, 2024, 45(4): 105-112, 128. doi: 10.7513/j.issn.1004-7638.2024.04.015
Xie Hong’en, Zheng Kui, Huang Chu, Zhu Fengxiang, Liu Juan. Change of phase composition and valuable elements in V-Ti pellet during softening-melting and dripping process[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 105-112, 128. doi: 10.7513/j.issn.1004-7638.2024.04.015
Citation: Xie Hong’en, Zheng Kui, Huang Chu, Zhu Fengxiang, Liu Juan. Change of phase composition and valuable elements in V-Ti pellet during softening-melting and dripping process[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 105-112, 128. doi: 10.7513/j.issn.1004-7638.2024.04.015

钒钛球团矿熔滴过程中有价元素及物相的变化

doi: 10.7513/j.issn.1004-7638.2024.04.015
详细信息
    作者简介:

    谢洪恩,1977年出生,男,四川内江人,博士,正高级工程师,长期从事钒钛磁铁矿高炉冶炼技术的研究开发工作,E-mail:pzhxiehongen@163.com

  • 中图分类号: TF046,TF533

Change of phase composition and valuable elements in V-Ti pellet during softening-melting and dripping process

  • 摘要: 模拟高炉冶炼气氛,对攀钢酸性钒钛球团矿在软熔和滴落过程中的物相组成和有价元素的变化进行了定量化的研究。结果表明,在钒钛球团矿的软熔滴落过程中,Ti和V逐渐从钛赤铁矿和钛铁矿迁移至渣相中。TiO2既可生成Ti进入金属铁,也可大量生成碳氮化钛。滴落试验中V在金属铁中的收得率为36.03%,远高于Ti和Si的3.13%和17.20%。炉渣和金属铁吸收焦炭中的S与渣铁间的脱硫反应同时进行,金属铁中S所占的比例由软熔时的72.84%降低至滴落时的50%。软熔液泛渣中辉石和黑钛石超过80%,渣中超过70%的V和Ti分布于黑钛石中。软熔未滴落渣中辉石明显减少,橄榄石和尖晶石明显增加,尖晶石中的V和Ti明显增加。滴落试验过程中TiO2逐渐被还原,TiC和TiN的质量分数之和超过20%,炉渣逐渐由TiO2质量分数超过30%的高钛渣转变为TiO2质量分数低于10%的低钛渣,未滴落渣中黑钛石以及分布于其中的V和Ti明显减少,橄榄石以及分布于其中的V和Ti增加。
  • 图  1  球团矿SEM照片及EDS分析

    Figure  1.  SEM photo and EDS analysis of V-Ti pellet

    图  2  球团矿软熔试验液泛渣SEM照片及EDS分析

    Figure  2.  SEM photo and EDS analysis of softening-melting flooding slag of V-Ti pellet

    图  3  软熔试验未滴渣SEM照片及EDS分析

    Figure  3.  SEM photo and EDS analysis residual slag after softening-melting test of V-Ti pellet

    图  4  滴落试验未滴渣SEM照片及EDS分析

    Figure  4.  SEM photo and EDS analysis of residual slag after dripping test of V-Ti pellet

    图  5  金属铁中V、Ti、Si的收得率

    Figure  5.  Yield of V, Ti, and Si in metallic iron

    图  6  TiO2、SiO2、VO还原反应的$\Delta G_{\rm{m}}^{\text{θ}}$

    Figure  6.  $\Delta G_{\rm{m}}^{\text{θ}}$of direct reduction reactions of TiO2, SiO2, and VO

    表  1  钒钛球团矿的主要化学成分

    Table  1.   Main chemical composition of V-Ti pellet %

    TFeFeOCaOSiO2MgOAl2O3TiO2V2O5S
    53.383.630.645.653.593.969.760.6830.008
    下载: 导出CSV

    表  2  焦炭的化学成分

    Table  2.   Chemical composition of coke %

    FcadMtStVdafAd
    K2ONa2OCaOSiO2MgOAl2O3Fe2O3合计
    85.880.230.631.090.080.100.497.240.133.731.0312.80
    下载: 导出CSV

    表  3  球团矿软熔和滴落试验的渣铁质量

    Table  3.   Mass of slag and metallic iron of pellet after softening-melting test and dripping test g

    类别液泛渣未滴落炉渣滴落渣滴落金属铁未滴金属铁合计
    软熔试验92.940.3166.3103.5403.1
    滴落试验46.16.075.922.8150.8
    下载: 导出CSV

    表  4  软熔和滴落试验炉渣的化学成分

    Table  4.   Chemical compositions of slags after softening-melting and dripping test %

    样品名称TFeMFeFeOCaOSiO2MgOAl2O3TiO2V2O5STiCTiN
    软熔试验液泛渣8.904.006.302.3421.29.5412.0730.502.260.063<0.10.155
    软熔试验未滴渣16.3012.405.021.1819.849.6710.9425.891.920.0730.178<0.1
    软熔试验合计11.146.545.911.9920.799.5811.7329.112.160.07
    滴落试验未滴落渣45.7545.000.961.5315.807.328.312.301.320.12011.240.73
    滴落试验滴落渣12.5611.501.362.7932.1411.2715.3019.550.680.0900.26<0.1
    滴落试验合计41.9341.141.011.6817.687.779.114.291.250.129.98
    下载: 导出CSV

    表  5  不计MFe时造渣组份的相对质量分数

    Table  5.   Relative mass fraction of slagging components of different slags without MFe %

    样品名称FeOCaOSiO2MgOAl2O3TiO2V2O5STiCTiN
    软熔试验液泛渣6.562.4422.089.9412.5731.772.350.07<0.10.16
    软熔试验未滴渣5.731.3522.6511.0412.4929.562.190.080.203<0.1
    滴落试验未滴渣1.752.7828.7313.3115.114.182.400.2220.441.33
    滴落试验滴落渣1.543.1536.3212.7317.2922.100.770.100.29<0.1
    下载: 导出CSV

    表  6  不计算MFe和FeO时造渣组分相对质量分数

    Table  6.   Relative mass fraction of slagging components of different slags without MFe and FeO %

    样品名称CaOSiO2MgOAl2O3TiO2V2O5STiCTiN
    软熔试验液泛渣2.6123.6310.6413.4634.002.520.070.110.17
    软熔试验未滴渣1.4324.0311.7113.2531.672.330.090.220.12
    软熔试验炉渣合计2.2723.7510.9413.4033.652.460.080.140.16
    滴落试验未滴渣2.8329.2413.5515.387.742.440.2220.801.35
    滴落试验滴落渣3.2036.8812.9317.5622.740.780.100.300.11
    滴落试验炉渣合计2.9030.5613.4415.7610.352.150.2017.241.14
    下载: 导出CSV

    表  7  软熔和滴落试验金属铁的化学成分

    Table  7.   Chemical compositions of metallic iron after softening-melting and dripping test %

    样品名称CSVTiSi
    软熔试验未滴铁5.290.0880.1120.1700.133
    软熔试验滴落铁5.310.0870.1040.0870.066
    滴落试验未滴铁4.720.1000.2420.5281.77
    重熔试验滴落铁5.130.0500.1300.1300.240
    生产铁样4.420.0870.333
    下载: 导出CSV

    表  8  Ti的相互作用系数、活度及反应(1)的吉布斯自由能

    Table  8.   Interaction coefficient and activity of Ti and $ \Delta G $ of reaction (1)

    温度/K$ e_{{\text{Ti}}}^{\text{C}} $$ e_{{\text{Ti}}}^{\text{S}} $$ e_{{\text{Ti}}}^{{\text{Si}}} $$ e_{{\text{Ti}}}^{{\text{Ti}}} $${ {{a} }_{\left[ { {\text{Ti} } } \right]} }$$ \Delta G $/(kJ·mol−1)
    1273−0.44−0.120.0740.0710.0035−85.05
    1373−0.41−0.110.0680.0660.0038−90.92
    1473−0.38−0.100.0640.0610.0041−96.79
    1573−0.36−0.100.0600.0580.0043−102.66
    1673−0.34−0.090.0560.0540.0045−108.53
    1773−0.32−0.080.0530.0510.0047−114.40
    1873−0.3−0.080.050.04830.0049−120.27
    下载: 导出CSV

    表  9  软熔和滴落试验中S的质量

    Table  9.   Mass of S during softening-melting and dripping test g

    阶段原料质量S质量 合计
    炉渣金属铁炉渣S金属铁S
    软熔133.2269.8 0.0880.2360.324
    重熔52.198.70.0610.0610.122
    球团矿5000.040
    下载: 导出CSV

    表  10  不同炉渣的物相组成和元素分布

    Table  10.   Phase and element distribution of different slag %

    物相名称软熔试验液泛渣软熔试验未滴落渣滴落试验未滴落渣
    wFeVTiwFeVTiwFeVTi
    金属铁9.6352.92.671.0730.1880.9110.085.8456.5890.1431.186
    黑钛石30.516.371.1175.3922.132.1541.2963.221.920.2810.199.19
    辉石47.4433.5919.5319.1515.075.2710.5412.517.113.5424.4437.81
    橄榄石0.650.870.730.175.481.53.231.296.640.95.949.2
    玻璃质9.212.030.062.069.060.960.262.541.570.080.470.91
    尖晶石1.180.843.360.9813.714.5728.2710.926.690.377.867.02
    碳氮氧化钛0.10.010.190.250.410.020.411.073.750.126.8818.56
    氮化钛0.0300.140.090.0200.070.060.520.023.484.06
    氧化铁0.110.40.060.060.280.550.130.171.221.231.680.79
    铁板钛矿1.13.022.130.792.783.964.562.293.422.927.425.53
    绿泥石0.0100.0300.560.081.150.080.080.010.260.02
    其它0.040.030.010.010.330.020.020.020.510.410.210.9
    下载: 导出CSV
  • [1] Yang Gangqing, Yang Wenkang, Li Xiaosong, et al. Comparative study of microstructure changes in vanadium titanium sinter and ordinary sinter during reduction process[J]. Iron Steel Vanadium Titanium, 2018,39(2):102-109. (杨广庆, 杨文康, 李小松, 等. 钒钛烧结矿与普通烧结矿还原过程中微观结构变化对比研究[J]. 钢铁钒钛, 2018,39(2):102-109.

    Yang Gangqin, Yang Wenkang, Li Xiaosong, et al. Comparative study of microstructure changes in vanadium titanium sinter and ordinary sinter during Reduction Process[J]. Iron Steel Vanadium Titanium, 2018, 39(2): 102-109
    [2] Gan Qin, He Qun, Wen Yongcai. Study on influence of MgO on mineral composition and metallurgical properties of V-bearing titaniferous magnetite sinter[J]. Iron and Steel, 2008,43(8):7-11. (甘勤, 何群, 文永才. MgO对钒钛烧结矿矿物组成及冶金性能影响的研究[J]. 钢铁, 2008,43(8):7-11.

    Gan Qin, He Qun, Wen Yongcai. Study on influence of MgO on mineral composition and metallurgical properties of V-bearing titaniferous magnetite sinter[J]. Iron and Steel, 2008, 43(8): 7-11
    [3] Bai Dongdong, Han Xiuli, Li Changcun, et al. Influence of mineral structure of vanadium-titanium sinter on its metallurgical properties[J]. Iron Steel Vanadium Titanium, 2018,39(5):111-115. (白冬冬, 韩秀丽, 李昌存, 等. 钒钛烧结矿矿相结构对其冶金性能的影响[J]. 钢铁钒钛, 2018,39(5):111-115.

    Bai Dongdong, Han Xiuli, Li Changcun, et al. Influence of mineral structure of vanadium-titanium sinter on its metallurgical properties[J]. Iron Steel Vanadium Titanium, 2018, 39(5): 111-115
    [4] 王强. 钒钛磁铁精矿烧结物性及其强化技术的研究[D]. 长沙: 中南大学, 2012.

    Wang Qiang. Research on sintering characteristics of vavadium-tianium magnetite concentrate and strengthening technologies[D]. Changsha: Central South University, 2012.
    [5] Zhang Jianliang, Yang Guangqing, Guo Hongwei, et al. Microstructure change of V-Ti magnetite concentrate pellets during reduction[J]. Journal of University of Science and Technology Beijing, 2013,35(1):42-48. (张建良, 杨广庆, 国宏伟, 等. 含钒钛铁矿球团还原过程中微观结构变化[J]. 北京科技大学学报, 2013,35(1):42-48.

    Zhang Jianliang, Yang Guangqin, Guo Hongwei, et al. Microstructure change of V-Ti magnetite concentrate pellets during reduction[J]. Journal of University of Science and technology Beijing, 2013, 35(1): 42-48
    [6] Zhan Xing. Anatomical study on smelting vanadium-bearing titanomagnetite in small blast furnace[J]. Iron Steel Vanadium Titanium, 1984,5(2):3-15. (詹星. 小高炉冶炼钒钛磁铁矿解剖研究[J]. 钢铁钒钛, 1984,5(2):3-15.

    Zhan Xin. Anatomical study on smelting vanadium-bearing titanomagnetite in small blast furnace[J]. Iron Steel Vanadium Titanium, 1984, 5(2): 3-15
    [7] Song Guocai, Yuan Tianyu, Chen Xiaowu. Study on phase composition of the cohesive dripping zone in BF during smelting V-bearing titaniferrous maganetite sinter[J]. Iron Steel Vanadium Titanium, 1996,17(2):25-27. (宋国才, 苑天宇, 陈小武. 高炉冶炼钒钛烧结矿软熔滴落带物相组成研究[J]. 钢铁钒钛, 1996,17(2):25-27.

    Song Guocai, Yuan Tianyu, Chen Xiaowu. Study on phase composition of the cohesive dripping zone in BF during smelting V-bearing titaniferrous maganetite sinter[J]. Iron Steel Vanadium Titanium, 1996, 17(2): 25-27
    [8] Diao Risheng. Difference in behaviors of V-Ti bearing and common iron ores within blast furnace[J]. Iron and Steel, 1996,31(2):12-16, 38. (刁日陞. 钒钛矿与普通矿在高炉各带行为差异的研究[J]. 钢铁, 1996,31(2):12-16, 38.

    Diao Risheng. Difference in behaviors of V-Ti bearing and common iron ores within blast furnace[J]. Iron and Steel, 1996, 31(2): 12-16, 38
    [9] Bao Yicheng, Jia Xueqing, Song Guocai. Simulation study on reduction process of softening-melting and dripping zone in blast furnace smelting for vanadium-titanium sinter[J]. Iron Steel Vanadium Titanium, 1993,14(2):1-11. (包毅成, 贾学庆, 宋国才. 钒钛烧结矿高炉冶炼软熔滴落带还原过程模拟研究[J]. 钢铁钒钛, 1993,14(2):1-11.

    Bao Yicheng. Jia Xueqin, Song Guocai. Simulation study on reduction process of softening-melting and dripping zone in blast furnace smelting for vanadium-titanium sinter[J]. Iron Steel Vanadium Titanium, 1993, 14(2): 1−11
    [10] 程功金. 块状带高铬型钒钛磁铁矿还原动力学及有价组元迁移行为的研究[D]. 沈阳: 东北大学, 2013.

    Cheng Gongjin. Study on kinetics of high chromia vanadium-titanium magnetite reduction and migration behavior of valuable elements in lumpy zone[D]. Shenyang: Northeatern University, 2013.
    [11] 刘建兴. 软熔滴落带高铬型钒钛磁铁矿有价组元迁移机理[D]. 沈阳: 东北大学, 2013.

    Liu Jianxing. The migration mechanism of valuable components for high chromia vanadium-titanium magnetite in cohesive zone[D]. Shenyang: Northeatern University, 2013.
    [12] Wang Hongtao, Zhao Wei, Chu Mansheng, et al. Effect and function mechanism of sinter basicity on softening-melting behaviors of mixed burden made from chromium-bearing vanadium-titanium magnetite[J]. Journal of Central South University, 2017,24:39.
    [13] Liu Songli, Bai Chenguang, Hu Tu, et al. Quick and direct reduction process of vanadium and titanium ore concentrate with carbon-containing pellets at high temperature[J]. Journal of Chongqing University, 2011,34(1):60-65. (刘松利, 白晨光, 胡途, 等. 钒钛铁精矿内配碳球团高温快速直接还原历程[J]. 重庆大学学报, 2011,34(1):60-65.

    Liu Songli, Bai Chenguang, Hu Tu, et al. Quick and direct reduction process of vanadium and titanium ore concentrate with carbon-containing pellets at high temperature[J]. Journal of Chongqing University, 34(1): 60-65.
    [14] Chen Shuangyin, Tang Yu, Chu Mansheng, et al. Reduction process of vanadium titano-magnetite with coal powder[J]. The Chinese Journal of Process Engineering, 2013,13(2):236-240. (陈双印, 唐钰, 储满生, 等. 钒钛磁铁矿的煤粉还原过程[J]. 过程工程学报, 2013,13(2):236-240.

    Chen Shuangyin, Tang Jue, Chu Mansheng, et al. Reduction process of vanadium titano-magnetite with coal powder[J]. The Chinese Journal of Process Engineering, 2013, 13(2): 236-240
    [15] Xie Hongen, Hu Peng, Zheng Kui, et al. Study on phase and chemical composition of V-Ti sinter during softening, melting and dripping process[J]. Iron Steel Vanadium Titanium, 2022,43(2):107-117. (谢洪恩, 胡鹏, 郑魁, 等. 钒钛烧结矿软熔滴落过程中的物相组成及化学成分变化规律研究[J]. 钢铁钒钛, 2022,43(2):107-117.

    Xie Hongen, Hu Peng, Zheng Kui, et al. Study on phase and chemical composition of V-Ti sinter during softening, melting and dripping process[J]. Iron Steel Vanadium Titanium, 2022, 43(2): 107-117
    [16] Wang Dongsheng. Experimental study of Fe removal from TiC-containing slag[J]. Iron Steel Vanadium Titanium, 2020,41(4):87-91. (王东生. 含TiC炉渣除铁试验研究[J]. 钢铁钒钛, 2020,41(4):87-91.

    Wang Dongsheng. Experimental study of Fe removal from TiC-containing slag[J]. Iron Steel Vanadium Titanium, 2020, 41(4): 87-91
    [17] Wang Cui, Jiao Kexin, Zhang Jianliang, et al. Characterization of Ti(C, N) superstructure derived from hot metal[J]. ISIJ International, 2021,61(1):138.
    [18] Jiang Tinfang, Zhao Lang, Luo Xiangyu, et al. Study on separation of titanium and slag during carbonization of titanium-bearing blast furnace slag[J]. Iron Steel Vanadium Titanium, 2021,42(6):51-58. (简廷芳, 赵朗, 罗翔宇, 等. 含钛高炉渣碳化过程钛-渣分离研究[J]. 钢铁钒钛, 2021,42(6):51-58.

    Jiang Tinfang, Zhao Lang, Luo Xianyu, et al. Study on separation of titanium and slag during carbonization of titanium-bearing blast furnace slag[J]. Iron Steel Vanadium Titanium, 2021, 42(6): 51-58
    [19] Tian Ye, Chen Shujun, Sun Yanqin, et al. Settlement process of iron in titania bearing blast furnace slag[J]. Iron Steel Vanadium Titanium, 2016,37(3):91-97. (田野, 陈树军, 孙艳芹, 等. 含钛高炉渣中铁沉降行为研究[J]. 钢铁钒钛, 2016,37(3):91-97.

    Tian Ye, Chen Shujun, Sun Yanqin, et al. Settlement process of iron in titania bearing blast furnace slag[J]. Iron Steel Vanadium Titanium, 2016, 37(3): 91-97
    [20] 马世伟. 高钛型高炉渣泡沫化机理的研究[D]. 重庆: 重庆大学, 2013.

    Ma Shiwei. Research on the mechanism of foaming for the blast furnace slag bearing high titania[D]. Chongqing: Chongqing University, 2013.
    [21] 黄希祜. 钢铁冶金原理[M]. 北京: 冶金工业出版社, 2013.

    Huang Xihu. Principles of iron and steel metallurgy[M]. Beijing: Metallurgical Industry Press, 2013.
    [22] 王筱留. 钢铁冶金学(炼铁部分)[M]. 北京: 冶金工业出版社, 2018.

    Wang Xiaoliu. Iron and steel metallurgy (ironmaking)[M]. Beijing: Metallurgical Industry Press, 2018.
    [23] Donald R Askeland, Pradeep P Phulé. 材料科学与工程基础(影印本)[M]. 北京: 清华大学出版社, 2015.

    Donald R Askeland, Pradeep P Phulé. Essentials of materials science and engineering[M]. Beijing: Tsinghua University Press, 2015.
    [24] 杜鹤桂. 高炉冶炼钒钛磁铁矿原理[M]. 北京: 科学出版社, 1996.

    Du Hegui. Principle of smelting vanadium-bearing titanomagnetite in blast furnace[M]. Beijing: Science Press, 1996.
    [25] Hu Qingqing, Ma Donglai, Zhou Kai, et al. Phase transformation and slag evolution of vanadium-titanium magnetite pellets during softening-melting process[J]. Powder Technology, 2022,(396):710-717.
    [26] Tang Wendong, Yang Songtao, Xue Xiangxin. Effect of titanium on the smelting process of chromium-bearing vanadium titanomagnetite pellets[J]. JOM, 2021,73(5):1362-1370.
  • 加载中
图(6) / 表(10)
计量
  • 文章访问数:  366
  • HTML全文浏览量:  132
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-30
  • 刊出日期:  2024-08-30

目录

    /

    返回文章
    返回