中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固溶处理对粉末注射成形高氮无镍不锈钢组织和性能的影响

邹黎明 刘瑞洋 蔡瑛 倪东惠

邹黎明, 刘瑞洋, 蔡瑛, 倪东惠. 固溶处理对粉末注射成形高氮无镍不锈钢组织和性能的影响[J]. 钢铁钒钛, 2024, 45(4): 137-142. doi: 10.7513/j.issn.1004-7638.2024.04.019
引用本文: 邹黎明, 刘瑞洋, 蔡瑛, 倪东惠. 固溶处理对粉末注射成形高氮无镍不锈钢组织和性能的影响[J]. 钢铁钒钛, 2024, 45(4): 137-142. doi: 10.7513/j.issn.1004-7638.2024.04.019
Zou Liming, Liu Ruiyang, Cai Ying, Ni Donghui. Effects of solution treatment on the microstructures and properties of high nitrogen nickel-free stainless steel prepared by MIM[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 137-142. doi: 10.7513/j.issn.1004-7638.2024.04.019
Citation: Zou Liming, Liu Ruiyang, Cai Ying, Ni Donghui. Effects of solution treatment on the microstructures and properties of high nitrogen nickel-free stainless steel prepared by MIM[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 137-142. doi: 10.7513/j.issn.1004-7638.2024.04.019

固溶处理对粉末注射成形高氮无镍不锈钢组织和性能的影响

doi: 10.7513/j.issn.1004-7638.2024.04.019
基金项目: 广州市教育局羊城学者科研专项(202235379);广东省教育厅特色创新科研专项(2021KTSCX273);广州市基础与应用基础研究专项(202201011608);广州市增城区创新领军团队专项(202102004)。
详细信息
    作者简介:

    邹黎明,1980年出生,男,湖南岳阳人,博士,副教授,长期从事金属材料加工技术的研究开发工作,E-mail:leon.zou@163.com

  • 中图分类号: TF124

Effects of solution treatment on the microstructures and properties of high nitrogen nickel-free stainless steel prepared by MIM

  • 摘要: 为了提高粉末注射成形技术制备的高氮无镍奥氏体不锈钢的性能,开展了后续固溶热处理。系统研究了固溶温度、固溶保温时间对不锈钢微观组织和力学性能的影响,并对固溶前后不锈钢样品的耐腐蚀性能进行了比较。结果显示:渗氮烧结后奥氏体基体中析出的Cr2N第二相影响了不锈钢的力学和耐腐蚀性能。固溶处理后,烧结形成的Cr2N第二相消失,为纯奥氏体组织。当固溶温度为1150 ℃,固溶保温时间为10 min时,不锈钢抗拉强度达到889 MPa,延伸率达到16.8%,力学性能最优。与固溶处理前相比,固溶处理后不锈钢样品腐蚀评级由0级提高到10级,耐腐蚀性能大幅提高。
  • 图  1  样品微观组织形貌

    (a)烧结未固溶处理;(b)固溶温度为850 ℃;(c)固溶温度为950 ℃;(d) 固溶温度为1150 ℃ (A:析出相;B:孔隙)

    Figure  1.  Microstructures of the sintered sample

    图  2  烧结样品EDS面扫描及元素分布

    Figure  2.  SEM surface scanning elemental analysis of the sintered sample

    图  3  烧结试样Cr2N析出TEM照片

    Figure  3.  TEM analysis of Cr2N precipitation in the sintered sample

    图  4  1150 ℃不同固溶时间处理样品的微观组织形貌

    (a)未进行固溶处理;(b)固溶处理10 min;(c)固溶处理50 min;(d)固溶处理90 min

    Figure  4.  Microstructures of samples with different annealing times at 1150

    图  5  1150 ℃×10 min固溶处理样品的XRD物相分析

    (a)烧结样品外表面;(b)烧结样品内部;(c)固溶处理样品

    Figure  5.  XRD patterns of samples after solution treatment at 1150 ℃×10 min

    图  6  拉伸断口形貌

    (a) 烧结样品;(b) 1 150 ℃×10 min固溶处理后样品

    Figure  6.  SEM morphology of the fracture surface

    图  7  盐雾试验后试样表面微观形貌

    (a)未固溶处理;(b)1 150 ℃固溶处理10 min后

    Figure  7.  Surface microscopic morphology of samples after salt spray tests

    表  1  高氮无镍不锈钢的化学成分

    Table  1.   Chemical composition of the sintered stainless steel %

    CNCrMoMn其它Fe
    0.020.7617.53.5120.1余量
    下载: 导出CSV

    表  2  不同固溶时间下样品的力学性能

    Table  2.   Mechanical properties of samples with different annealing times at 1150

    固溶时间/min屈服强度/ MPa抗拉强度 /MPa延伸率/%
    06658192.6
    1064888916.8
    5061483210.5
    906026828.5
    下载: 导出CSV
  • [1] Ji Wenhua. Classification and selection of stainless steel[J]. Scientific and Technological Information, 2012(4):455. (季文华. 不锈钢的分类与选择[J]. 科技信息, 2012(4):455. doi: 10.3969/j.issn.1001-9960.2012.04.411

    Ji Wenhua. Classification and selection of stainless steel[J]. Scientific and Technological Information, 2012(4): 455. doi: 10.3969/j.issn.1001-9960.2012.04.411
    [2] Hull F C. Delta ferrite and martnesite formation in stainless steels[J]. Welding Journal, 1973,52(5):193.
    [3] Ren Y, Ke Y, Zhang B. In vitro study of platelet ahesion on medical nickel-free stainless steel surface[J]. Materials Letters, 2005,59(14-15):1785−1789. doi: 10.1016/j.matlet.2005.01.067
    [4] Uggowitzer P J, Magdowski R, Speidel M O, et al. Nickel free high nitrogen austenitic steels[J]. ISIJ International, 2007,36:901−908.
    [5] Rashev T V, Eliseev A V, Zhekova L T, et al. High-nitrogen steel[J]. Steel in Translation, 2019,49(7):433−439. doi: 10.3103/S0967091219070106
    [6] Yuan Zhizhong, Dai Qixun, Cheng Xiaonong, et al. The role of nitrogen in austenitic stainless steels[J]. Journal of Jiangsu University (Natural Science Edition), 2002(3):72−75. (袁志钟, 戴起勋, 程晓农, 等. 氮在奥氏体不锈钢中的作用[J]. 江苏大学学报(自然科学版), 2002(3):72−75.

    Yuan Zhizhong, Dai Qixun, Cheng Xiaonong, et al. The role of nitrogen in austenitic stainless steels[J]. Journal of Jiangsu University (Natural Science Edition), 2002(3): 72−75.
    [7] Simmons J W. Overview: High-nitrogen alloying of stainless steels[J]. Materials Science and Engineering A, 1996,207(2):159−169. doi: 10.1016/0921-5093(95)09991-3
    [8] Hu Ling. Preparation, microstructure and properties of high-nitrogen nickel-free austenitic stainless steel prepared by powder metallurgy[D]. Guangzhou: South China University of Technology, 2020. (胡玲. 粉末冶金高氮无镍奥氏体不锈钢的制备、组织和性能[D]. 广州: 华南理工大学, 2020.

    Hu Ling. Preparation, microstructure and properties of high-nitrogen nickel-free austenitic stainless steel prepared by powder metallurgy[D]. Guangzhou: South China University of Technology, 2020.
    [9] Jia Chengchang, Kuang Chunjiang. The development history of powder metallurgy high nitrogen stainless steel[J]. Metal World, 2015(1):23−27. (贾成厂, 况春江. 粉末冶金高氮不锈钢的发展历程[J]. 金属世界, 2015(1):23−27. doi: 10.3969/j.issn.1000-6826.2015.01.08

    Jia Chengchang, Kuang Chunjiang. The development history of powder metallurgy high nitrogen stainless steel[J]. Metal World, 2015(1): 23−27. doi: 10.3969/j.issn.1000-6826.2015.01.08
    [10] Cui Dawei, Jiang Junsheng, Cao Guangming, et al. Preparation of high nitrogen and nickel-free austenitic stainless steel by powder injection molding[J]. Journal of University of Science and Technology Beijing, 2008(2):151−154.
    [11] Huang Chengcheng. Fabrication, microstructure and properties of injection molding high-N Ni-free austenitic stainless steel[D]. Guangzhou: South China University of Technology, 2021. (黄成成. 金属注射成型高氮无镍奥氏体不锈钢制备与组织性能研究[D]. 广州: 华南理工大学, 2021.

    Huang Chengcheng. Fabrication, microstructure and properties of injection molding high-N Ni-free austenitic stainless steel[D]. Guangzhou: South China University of Technology, 2021.
    [12] Rawers J. Injection moulding of nitrogen enhanced stainless steel[J]. Metal Powder Report, 1997,52(3):37−41.
    [13] Turan Y N, Koursaris A. Nitrogen-alloyed austenitic stainless steels and their properties[J]. Journal of the South African Institute of Mining & Metallurgy, 1993,93(4):97−104.
    [14] Liu Ruiyang, Zou Liming, Wang Libiao, et al. Sintering optimization of high-nitrogen nickel-free austenitic stainless steel prepared by metal injection molding[J]. Engineering and Technological Research, 2023,8(4):1−4. (刘瑞洋, 邹黎明, 王力彪, 等. 金属注射成形制备高氮无镍奥氏体不锈钢的烧结优化[J]. 工程技术研究, 2023,8(4):1−4. doi: 10.12417/2705-0998.23.04.001

    Liu Ruiyang, Zou Liming, Wang Libiao, et al. Sintering optimization of high-nitrogen nickel-free austenitic stainless steel prepared by metal injection molding[J]. Engineering and Technological Research, 2023, 8(4): 1−4. doi: 10.12417/2705-0998.23.04.001
    [15] Liu Ruiyang. Dynamic injection molding of high nitrogen nickel free austenitic stainless steel[D]. Qinhuangdao: Yanshan University, 2021. (刘瑞洋. 高氮无镍奥氏体不锈钢的动态注射成形技术研究[D]. 秦皇岛: 燕山大学, 2021.

    Liu Ruiyang. Dynamic injection molding of high nitrogen nickel free austenitic stainless steel[D]. Qinhuangdao: Yanshan University, 2021.
    [16] Li Jingyuan, Liu Huinan, Huang Peiwu. Effects of pre-precipitation of Cr2N on microstructures and properties of high nitrogen stainless steel[J]. Journal of Central South University, 2012,19(5):1189−1195. doi: 10.1007/s11771-012-1127-x
    [17] Lee T H, Kim S J, Jung Y C, et al. Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo-(N) superaustenitic stainless steels aged at 900 ℃[J]. Metallurgical and Materials Transactions, 2000,31A:1713−1723.
    [18] Wei W, Wei Y, Ke Y, et al. Temperature dependence of tensile behaviors of nitrogen-alloyed austenitic stainless steels[J]. Journal of Materials Engineering and Performance, 2010,19(8):1214−1219. doi: 10.1007/s11665-010-9603-7
    [19] Bannykh I O, Sevost’yanov M A, Prutskov M E. Effect of heat treatment on the mechanical properties and the structure of a high-nitrogen austenitic 02Kh20AG10N4MFB steel[J]. Russian Metallurgy (Metally), 2016(7):613−618.
    [20] Kartik B, Veerababu R, Sundararaman M, et al. Effect of high temperature ageing on microstructure and mechanical properties of a nickel-free high nitrogen austenitic stainless steel[J]. Materials Science & Engineering A, 2015,642:288−296.
    [21] Wu X Q, Xu S, Huang J B, et al. Uniform corrosion and intergranular corrosion behavior of nickel-free and manganese alloyed high nitrogen stainless steels[J]. Materials & Corrosion, 2015,59(8):676−684.
    [22] Talha M, Behera C K, Sinha O P. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications[J]. Materials Science & Angineering, 2013,33(7):3563−3575.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  67
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-08
  • 刊出日期:  2024-08-30

目录

    /

    返回文章
    返回