中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相变温度和奥氏体化温度对一种含Nb高碳钢相变动力学和组织的影响

周明星 池亦骋 刘敬韬 李征乾 刘思华 张代琛 苏雪 田俊羽

周明星, 池亦骋, 刘敬韬, 李征乾, 刘思华, 张代琛, 苏雪, 田俊羽. 相变温度和奥氏体化温度对一种含Nb高碳钢相变动力学和组织的影响[J]. 钢铁钒钛, 2024, 45(4): 143-149. doi: 10.7513/j.issn.1004-7638.2024.04.020
引用本文: 周明星, 池亦骋, 刘敬韬, 李征乾, 刘思华, 张代琛, 苏雪, 田俊羽. 相变温度和奥氏体化温度对一种含Nb高碳钢相变动力学和组织的影响[J]. 钢铁钒钛, 2024, 45(4): 143-149. doi: 10.7513/j.issn.1004-7638.2024.04.020
Zhou Mingxing, Chi Yicheng, Liu Jingtao, Li Zhengqian, Liu Sihua, Zhang Daichen, Su Xue, Tian Junyu. Effects of transformation temperature and austenitization temperature on the transformation kinetics and microstructure of a Nb microalloyed high-carbon steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 143-149. doi: 10.7513/j.issn.1004-7638.2024.04.020
Citation: Zhou Mingxing, Chi Yicheng, Liu Jingtao, Li Zhengqian, Liu Sihua, Zhang Daichen, Su Xue, Tian Junyu. Effects of transformation temperature and austenitization temperature on the transformation kinetics and microstructure of a Nb microalloyed high-carbon steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 143-149. doi: 10.7513/j.issn.1004-7638.2024.04.020

相变温度和奥氏体化温度对一种含Nb高碳钢相变动力学和组织的影响

doi: 10.7513/j.issn.1004-7638.2024.04.020
基金项目: 中信-CBMM 铌钢研究与开发项目(2020-M836)。
详细信息
    作者简介:

    周明星,男,1991年出生,河南南阳人,博士,讲师,研究方向:高性能钢铁材料组织性能研究 ,E-mail:kdmingxing@wust.edu.cn

    通讯作者:

    田俊羽,男, 1992年出生,湖北云梦人,博士,讲师,研究方向: 钢铁材料加工和性能控制 ,E-mail:tianjunyu@wust.edu.cn

  • 中图分类号: TF76, TG142

Effects of transformation temperature and austenitization temperature on the transformation kinetics and microstructure of a Nb microalloyed high-carbon steel

  • 摘要: 为了优化一种含Nb高碳钢的热处理工艺,采用热膨胀法、OM、SEM、EBSD、硬度仪等研究了加热温度和相变温度对珠光体相变动力学和组织性能的影响。结果表明:升高加热温度将减慢珠光体相变动力学。原因:①奥氏体晶粒增大导致珠光体形核点数量降低;②奥氏体中固溶Nb含量增多,其对C扩散系数的减慢程度增强,从而降低珠光体长大速率。相变温度由625 ℃降低至575 ℃时,珠光体相变动力学同样减慢。此外,相变温度由625 ℃降低至575 ℃时,珠光体形核方式发生了变化,由主要在晶隅和晶棱处形核转变为主要在晶面和晶棱处形核。降低相变温度可以细化珠光体片层间距,提高珠光体钢的硬度,珠光体团簇尺寸同样随相变温度和加热温度的降低而显著细化。在试验所研究的三个工艺中,900 ℃加热+575 ℃相变工艺具有最高的硬度和最细的团簇尺寸。因此,为了获得最佳的强韧性匹配,建议降低加热温度和相变温度。
  • 图  1  加热和冷却过程膨胀量随温度变化规律

    Figure  1.  Dilatation versus temperature during heating and cooling processes

    图  2  (a) 珠光体相变动力学; (b) 珠光体相变速率

    Figure  2.  (a) Pearlite transformation kinetics; (b) Pearlite transformation rate

    图  3  (a) Nb在奥氏体中的固溶量; (b) NbC含量随温度变化规律

    Figure  3.  (a) solubility of Nb in austenite; (b) the amount NbC versus temperature

    图  4  珠光体相变动力学拟合

    Figure  4.  Fitting results of pearlite transformation kinetics

    (a) 900-625; (c) 1080-625; (d) 900-575

    图  5  OM组织形貌

    Figure  5.  OM microstructures

    (a) 900-625; (c) 1 080-625; (d) 900-575

    图  6  SEM组织形貌

    Figure  6.  SEM microstructures

    (a) 900-625; (c) 1 080-625; (d) 900-575

    图  7  圆形截线法测量珠光体片层间距示意

    Figure  7.  Schematic diagram of measuring pearlite lamellar spacing by the circular intercept method

    图  8  EBSD珠光体团簇晶粒形貌

    Figure  8.  Pearlite grain morphology characterized by EBSD

    (a) 900-625; (c) 1180-625; (d) 900-575

    图  9  不同试样维氏硬度

    Figure  9.  Vickers hardness of different samples

  • [1] Zhou Qingyue, Zhang Yinhua, Chen Zhaoyang, et al. Research and selection of rail steel in China[J]. Chinese Railways, 2011,(11):47-51. (周清跃, 张银花, 陈朝阳, 等. 我国铁路钢轨钢的研究及选用[J]. 中国铁路, 2011,(11):47-51.

    Zhou Qingyue, Zhang Yinhua, Chen Zhaoyang, et al. Research and Selection of Rail Steel in China[J]. Chinese Railways, 2011, (11): 47-51.
    [2] Calvo J, Jung I H, Elwazri A M, et al. Influence of the chemical composition on transformation behavior of low carbon microalloyed steels[J]. Materials Science & Engineering A, 2009,520:90-96.
    [3] Xie K Y, Zheng T, Cairney J M, et al. Strengthening from Nb-rich clusters in a Nb-microalloyed steel[J]. Scripta Materialia, 2012,66:710-713.
    [4] Deardo A J. Niobium in modern steels[J]. International Materials Reviews, 2013,48:371-402.
    [5] Fu Liming, Wang Huanrong, Wang Wei, et al. Effect of solute drag and precipitate pinning on austenite grain growth in Ti-Nb microalloyed steels[J]. Journal of Iron and Steel Research, International, 2011,18(s1):383-387.
    [6] Ray A. Niobium microalloying in rail steels[J]. Materials Science and Technology, 2017,33:1584-1600.
    [7] Zhou Jiehu, Wu Feng, Feng Kaiming, et al. Ultrafine pearlitic transformation behavior of 2000 MPa ultra-high-strength steel wire under Nb microalloying[J]. Steel Research International, 2021,92:2000516.
    [8] Dey I, Chandra S, Saha R, et al. Effect of Nb micro-alloying on microstructure and properties of thermo-mechanically processed high carbon pearlitic steel[J]. Materials Characterization, 2018,140:45-54.
    [9] Jansto S G. MicroNiobium alloy approach in medium and high carbon steel bar, plate and sheet products[J]. Metallurgical & Materials Transactions B, 2014,45:438-444.
    [10] Liu Chengjun, Huang Yahe, Liu Hongliang, et al. Effects and mechanisms of niobium on the fracture toughness of heavy rail steel[J]. Advanced Materials Research, 2011,163-167:110-116.
    [11] Tian Junyi, Wang Houxin, Zhu Min, et al. Improving mechanical properties in high-carbon pearlitic steels by replacing partial V with Nb[J]. Materials Science & Engineering A, 2022,834:142622.
    [12] Liu Feng, Xu Gang, Zhang Yulong, et al. In situ observations of austenite grain growth in Fe-C-Mn-Si super bainitic steel[J]. International Journal of Minerals, Metallurgy, and Materials, 2013,20:1060-1066.
    [13] Zener C. Kinetics of the decomposition of austenite[j]. Transactions AIME, 1945, 167: 550-595.
    [14] Offerman S E, Wilderen L J G W, Dijk N H, et al. In-situ study of pearlite nucleation and growth during isothermal austenite decomposition in nearly eutectoid steel[J]. Acta Materialia, 2003,51:3927-3938.
    [15] Yong Qilong, Zhang Zhengyan, Sun Xinjun, et al. Effect of dissolved niobium on eutectoid transformation behavior[J]. Journal of Iron and Steel Research, International, 2017, 24 973-978.
    [16] Lee K J, Lee J K. Modelling of γ/α transformation in niobium-containing microalloyed steels[J]. Scripta Materialia, 1999, 40: 831-836.
    [17] Yeong T P. Measurement and modelling of diffusional transformation of austenite in C-Mn steels[D]. Taibei: National Sun Yat-Sen University, 2001.
  • 加载中
图(9)
计量
  • 文章访问数:  189
  • HTML全文浏览量:  110
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-20
  • 刊出日期:  2024-08-30

目录

    /

    返回文章
    返回