中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mg对2.25Cr1Mo钢热处理显微组织与力学性能的影响

程杨 李小兵 高明 刘奎

程杨, 李小兵, 高明, 刘奎. Mg对2.25Cr1Mo钢热处理显微组织与力学性能的影响[J]. 钢铁钒钛, 2024, 45(4): 150-157. doi: 10.7513/j.issn.1004-7638.2024.04.021
引用本文: 程杨, 李小兵, 高明, 刘奎. Mg对2.25Cr1Mo钢热处理显微组织与力学性能的影响[J]. 钢铁钒钛, 2024, 45(4): 150-157. doi: 10.7513/j.issn.1004-7638.2024.04.021
Cheng Yang, Li Xiaobing, Gao Ming, Liu Kui. Effect of trace Mg addition on microstructure and mechanical properties in 2.25Cr1Mo steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 150-157. doi: 10.7513/j.issn.1004-7638.2024.04.021
Citation: Cheng Yang, Li Xiaobing, Gao Ming, Liu Kui. Effect of trace Mg addition on microstructure and mechanical properties in 2.25Cr1Mo steel[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(4): 150-157. doi: 10.7513/j.issn.1004-7638.2024.04.021

Mg对2.25Cr1Mo钢热处理显微组织与力学性能的影响

doi: 10.7513/j.issn.1004-7638.2024.04.021
基金项目: 国家自然科学基金资助项目(51801210)。
详细信息
    作者简介:

    程杨,1985年出生,男,重庆人,工程师,从事核电材料设计与开发工作,E-mail:chengyang@dongfang.com

    通讯作者:

    高明,1974年出生,男,辽宁人,正高级工程师,从事核级高性能合金制备技术工作,E-mail:gaoming@imr.ac.cn

  • 中图分类号: TF76,TG142.74

Effect of trace Mg addition on microstructure and mechanical properties in 2.25Cr1Mo steel

  • 摘要: 为揭示Mg在低合金钢中的微合金化效果,以2.25Cr1Mo钢为研究对象,利用真空感应炉、450型双辊可逆轧机制备不同Mg含量的15 mm板材,采用OM、TEM等手段分析热处理后显微组织,以及原奥氏体晶粒特征,并对其力学性能进行了测定。研究结果表明:Mg加入2.25Cr1Mo钢中可细化其原奥氏体晶粒,增加热处理组织中多边形铁素体体积分数。2.25Cr1Mo钢全氧含量在0.0003%的低含量条件下,Mg会偏聚在碳化物中,诱使碳化物尺寸降低,数量增多,增强碳化物对奥氏体晶粒长大的钉扎作用,进而达到细化原奥氏体晶粒的效果。经0.005%Mg处理后,2.25Cr1Mo钢冲击韧性稍有提升,而显微硬度变化并不明显。Mg处理后使得钢中铁素体分数出现一定范围内的增加是改善其冲击韧性的重要原因。
  • 图  1  试验钢热处理后显微组织

    Figure  1.  Microstructure of heat-treated steels

    (a)S1; (b)S2

    图  2  S2试验钢中典型非金属夹杂物形貌及成分

    (a)(c)是典型夹杂物形貌;(b)(d)分别是典型夹杂物(a)和(c)的成分分析结果

    Figure  2.  Morphology and chemical compositions of the typical inclusions in S2 sample

    图  3  试验钢930 ℃保温30 min后的原奥氏体晶粒形貌

    (a)(b)分别为S1和S2试样腐蚀后的原始金相组织;(c)(d)分别为S1和S2试样腐蚀后经统计软件处理后的金相组织

    Figure  3.  The morphology of primary austenite grain of heat-treated steels after holding at 930 ℃ for 30min

    图  4  (a)S1, (c)S2 试验钢中晶界典型析出相形貌分析;(b)S1, (d)S2 试验钢中晶界典型析出相成分分析

    Figure  4.  Morphology of grain boundary precipitates in (a)S1 and (c)S2 experimental steels, the compositions of grain boundary precipitates in (b)S1 and (d)S2 experimental steels

    图  5  试验钢冲击功和显微硬度测试结果对比

    Figure  5.  Comparison of the impact energy and microhardness of the experimental steels

    图  6  试验钢冲击断口低倍和高倍形貌

    (a)S1试样冲击断口宏观形貌;(b)(c)分别是(a)中A和B处的放大形貌;(d) S2试样冲击断口宏观形貌;(e)(f)分别是(d)中A和B处的放大形貌

    Figure  6.  Low and high magnification fractography of the experimental steels

    表  1  试验钢主要化学成分

    Table  1.   Main chemical compositions of the steels %

    试验钢序号CCrMoMnTiNiPSNOMg
    S10.112.211.000.490.050.890.0020.00440.00650.0005
    S20.112.211.040.490.050.860.0020.00170.00630.00030.005
    下载: 导出CSV
  • [1] Liu Zhen, Ma Jin, Chen Derun. Local hear treatment of defective casting of 2.25Cr-1Mo alloy steel after rewelding[J]. Foundry Engineering, 2016,5:36-38. (刘振, 马进, 陈得润. 有缺陷的2.25Cr-1Mo合金钢铸件返修焊接后的局部热处理[J]. 铸造工程, 2016,5:36-38. doi: 10.3969/j.issn.1673-3320.2016.05.016

    Liu Zhen, Ma Jin, Chen Derun. Local hear treatment of defective casting of 2.25Cr-1Mo alloy steel after rewelding[J]. Foundry Engineering, 2016, 5: 36-38. doi: 10.3969/j.issn.1673-3320.2016.05.016
    [2] Yoshino K, McMahon C J. The cooperative relation between temper embrittlement and hydrogen embrittlement in a high strength steel[J]. Metallurgical Transactions, 1974,5(2):363. doi: 10.1007/BF02644103
    [3] Li Xiaobing, Dong Xin, Xing Weiwei, et al. Effect of alloying elements addition on the secondary tempering brittleness of Cr-Mo steels reviews[J]. Iron and Steel, 2021, 56(3): 1-10. (李小兵, 董鑫, 邢炜伟, 等. 合金元素对Cr-Mo钢第二类回火脆性影响研究综述[J]. 钢铁, 2021, 56(3): 1-10.

    Li Xiaobing, Dong Xin, Xing Weiwei, et al. Effect of alloying elements addition on the secondary tempering brittleness of Cr-Mo steels reviews[J]. Iron and Steel, 2021, 56(3): 1-10.
    [4] Qu Z, McMahon C J. The effects of tempering reactions on temper embrittlement of alloy steels[J]. Metall. Trans. A, 1983, 14: 1101-1108.
    [5] McMahon C J, Cianelli A K, Feng H C. The influence of Mo on P-induced temper embrittlement in Ni-Cr steel[J]. Metall. Trans. A, 1977, 8(7): 1055-1057.
    [6] Geng W T, Freeman A J, Olson G B. Influence of alloying additions on the impurity induced grain boundary embrittlement[J]. Solid State Commun., 2001,119:585. doi: 10.1016/S0038-1098(01)00298-8
    [7] Zhang Dongbin, Wu Chengjian. Behavior of cerium in grain boundary segregation and its influence on equilibrium segregation of phosphorus at grain boundary in α-iron[J]. Acta Metallurgical Sinica, 1988,24(2):100. (张东彬, 吴承建. Ce在α-Fe晶界的偏聚及其对磷的晶界平衡偏聚的影响[J]. 金属学报, 1988,24(2):100.

    Zhang Dongbin, Wu Chengjian. Behavior of cerium in grain boundary segregation and its influence on equilibrium segregation of phosphorus at grain boundary in α-iron[J]. Acta Metallurgical Sinica, 1988, 24(2): 100.
    [8] Wang Haiyang, Gao Xueyun, Ren Huiping, et al. Density functional theory study on cerium occupying tendency and effecting mechanism in bcc α-Fe[J]. Rare Metal Materials and Engineering, 2014,43(11):2739. (王海洋, 高雪云, 任慧平, 等. 稀土Ce在α-Fe中占位倾向与作用机理的密度泛函理论研究[J]. 稀有金属材料与工程, 2014,43(11):2739.

    Wang Haiyang, Gao Xueyun, Ren Huiping, et al. Density functional theory study on cerium occupying tendency and effecting mechanism in bcc α-Fe[J]. Rare Metal Materials and Engineering, 2014, 43(11): 2739.
    [9] Jahazi M, Jonas J J. The non-equilibrium segregation of boron on original and moving austenite grain boundaries[J]. Mater. Sci. Eng. A, 2002, 335: 49-54.
    [10] Jones R B, Younas C M, Heard P J. The effect of microscale distribution of boron on the yield strength of C-Mn steels subjected to neutron irradiation[J]. Acta Metall., 2002, 50(17): 4395-4417.
    [11] Song S H, Guo M A, Shen D D, et al. Effect of boron on the hot ductility of 2.25Cr1Mo steel[J]. Mater. Sci. Eng. A, 2003, 360: 96-100.
    [12] Takahashi J, Kawakami K, Ushioda K, et al. Quantitative analysis of grain boundaries in carbon- and nitrogen added ferritic steels by atom probe tomography[J]. Scripta Materialia, 2012,66:207. doi: 10.1016/j.scriptamat.2011.10.026
    [13] Han J C, Seolb J B, Jafari M, et al. Competitive grain boundary segregation of phosphorus and carbon governs delamination crack in a ferritic steel[J]. Materials Characterization, 2018,145:454. doi: 10.1016/j.matchar.2018.08.060
    [14] Li Xiaobing, Dong Xin, Zhao Pengxiang, et al. Effect of Mg Addition on the temper embrittlement in 2.25Cr-1Mo steel doped with 0.056% P—Mg segregation behavior at grain boundary[J]. Journal of Iron and Steel Research International, 2021, 28(10): 1259-1267.
    [15] Wang Deyong, Qu Tianpeng. Development and prospect of Mg clean steel technology[J]. Steelmaking, 2020,36(5):1-13. (王德永, 屈天鹏. 镁洁净钢新技术发展与展望[J]. 炼钢, 2020,36(5):1-13.

    Wang Deyong, Qu Tianpeng. Development and prospect of Mg clean steel technology[J]. Steelmaking, 2020, 36(5): 1-13.
    [16] Li Xiaobing, Min Yi, Liu Chengjun, et al. Effect of Mg addition on the characterization of γ-α phase transformation during continuous cooling in low carbon steel[J]. Steel Research International, 2015,86(12):1530-1540. doi: 10.1002/srin.201400517
    [17] Liu Ying, Liu Jianhua, He Yang, et al. Effect of Mg addition on solidification structure and inclusions in ALSI4130 steel[J]. Steelmaking, 2022,38(6):6-13. (刘颖, 刘建华, 何杨, 等. 镁处理对AISI4130钢组织及夹杂物的影响[J]. 炼钢, 2022,38(6):6-13.

    Liu Ying, Liu Jianhua, He Yang, et al. Effect of Mg addition on solidification structure and inclusions in ALSI4130 steel[J]. Steelmaking, 2022, 38(6): 6-13.
    [18] Li Yandong, Xing Weiwei, Li Xiaobing, et al. Effect of Mg addition on microstructure and properties of heat-affected zone in submerged arc welding of a Al-killed low carbon steel[j]. Materials, 2021, 14(9): 2445.
    [19] Sarma D S, Karasev A V, Jonsson P G. On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels[J]. ISIJ International, 2009,49(7):1063-1074. doi: 10.2355/isijinternational.49.1063
    [20] Badu S S, Bhadeshia H K D H. Stress and the acicular ferrite transformation[J]. Materials Science and Engineering A, 1992,156(1):1-9. doi: 10.1016/0921-5093(92)90410-3
    [21] Bor H Y, Chao C G, Ma C Y. The influence of magnesium on carbide characteristics and creep behavior of the Mar-M247 superalloy[J]. Scr. Mater. , 1997, 38(2): 329-335.
    [22] Sakata K, Suito H. Grain-growth-inhibiting effects of primary inclusion particles of ZrO2 and MgO in Fe-10masspctNi alloy[J]. Metallurgical and Materials Transactions A, 2000,31(4):1213-1223. doi: 10.1007/s11661-000-0117-z
    [23] Kojima A, Kiyose A, Uemori R, et al. Super high HAZ toughness technology with fine microstructure imparted by fine particles[J]. Nippon Steel Technical Research, 2004(90):2-6.
    [24] Tian Bo, Sun Ligen, Zhu Liguang. The behavior of pinned particles for Mg treated shipbuilding steel under high temperature[J]. Steelmaking, 2020,36(6):72-77. (田博, 孙立根, 朱立光. 高温条件下Mg处理船体钢钉扎粒子的作用行为[J]. 炼钢, 2020,36(6):72-77.

    Tian Bo, Sun Ligen, Zhu Liguang. The behavior of pinned particles for Mg treated shipbuilding steel under high temperature[J]. Steelmaking, 2020, 36(6): 72-77.
    [25] Ji Yongshuai, Li Yang, Jiang Zhouhua, et al. Process of adding magnesium oxide particles in preparation of iron and steel materials[J]. China Metallurgy, 2023,33(2):8-21. (鸡永帅, 李阳, 姜周华, 等. 外加镁系氧化物粒子在钢铁材料制备中的进展[J]. 中国冶金, 2023,33(2):8-21.

    Ji Yongshuai, Li Yang, Jiang Zhouhua, et al. Process of adding magnesium oxide particles in preparation of iron and steel materials[J]. China Metallurgy, 2023, 33(2): 8-21.
    [26] Han S Q, Zhao J Q, Wan R D, et al. Effect of microstructure on long-term aging stability of 2.25Cr-1Mo steel[J]. Heat Treatment of Metals, 2020,45(2):11-18.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  74
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-08
  • 刊出日期:  2024-08-30

目录

    /

    返回文章
    返回