中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CH4还原氮化V2O3制备VN

夏三元 姜涛 陈泊键 温婧 杨广东 刘孟霞

夏三元, 姜涛, 陈泊键, 温婧, 杨广东, 刘孟霞. CH4还原氮化V2O3制备VN[J]. 钢铁钒钛, 2024, 45(5): 17-25. doi: 10.7513/j.issn.1004-7638.2024.05.003
引用本文: 夏三元, 姜涛, 陈泊键, 温婧, 杨广东, 刘孟霞. CH4还原氮化V2O3制备VN[J]. 钢铁钒钛, 2024, 45(5): 17-25. doi: 10.7513/j.issn.1004-7638.2024.05.003
Xia Sanyuan, Jiang Tao, Chen Bojian, Wen Jing, Yang Guangdong, Liu Mengxia. Preparation of VN by reduction nitriding V2O3 with CH4[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 17-25. doi: 10.7513/j.issn.1004-7638.2024.05.003
Citation: Xia Sanyuan, Jiang Tao, Chen Bojian, Wen Jing, Yang Guangdong, Liu Mengxia. Preparation of VN by reduction nitriding V2O3 with CH4[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 17-25. doi: 10.7513/j.issn.1004-7638.2024.05.003

CH4还原氮化V2O3制备VN

doi: 10.7513/j.issn.1004-7638.2024.05.003
基金项目: 国家自然科学基金项目 (52174277,52374300,52204309)。
详细信息
    作者简介:

    夏三元,1999年出生,男,河北邢台人,硕士研究生,主要从事VN制备工艺研究,E-mail:554804131@qq.com

    通讯作者:

    姜涛,1973年出生,男,辽宁本溪人,教授,博士生导师,主要从事冶金资源综合利用研究,E-mail:jiangt@smm.neu.edu.cn

  • 中图分类号: TF841.3

Preparation of VN by reduction nitriding V2O3 with CH4

  • 摘要: 通过热力学计算和试验工艺结合的方式,探究了利用CH4作为还原剂碳热还原、氮化制备VN的工艺条件以及反应过程。结果表明:在CH4流量0.1 L/min、1150 ℃保温2 h并继续渗氮2 h的条件下,成功合成了氮、碳含量分别为14.2%、3.35%的VN产物,符合国家VN16(GB/T 20567-2020)氮化钒产品标准。反应过程中的物相转变过程为V2O3→V8C7→VN,并且CH4在高温条件下分解产生的高活性炭与H2均有利于碳化反应的进行,能有效提高反应速率。
  • 图  1  钒氧化物在CH4气氛下还原氮化过程中涉及的反应ΔGθ-T曲线

    Figure  1.  Reaction ΔGθ-T curve involved in reductive nitridation of vanadium oxide in methane atmosphere

    图  2  不同气体比例下碳含量变化

    (a)无N2;(b) CH4:N2=3:1;(c) CH4:N2=3:2;(d) CH4:N2=1:1

    Figure  2.  Change of carbon content under different gas ratios

    图  3  (a)试验流程; (b)还原氮化过程升温制度

    1-质量流量计;2-计算机;3-分析天平;4-尾气排放管路 ;5-钨丝篮;6-炉膛保温段;7-电炉管壁

    Figure  3.  (a) Experimental flow chart, (b) temperature rising system in reduction nitriding process

    图  4  不同反应温度条件下反应物的失重曲线以及物相图谱

    (a)失重曲线;(b)1050 ℃条件下阶段Ⅱ产物图谱;(c)产物物相图谱

    Figure  4.  Weight loss curves and phase diagrams of reactants at different reaction temperatures

    图  5  0.1 L/min CH4条件下V2O31150 ℃保温2 h反应产物微观形貌与元素含量

    (a)微观形貌;(b)~(e)V、N、C、O元素分布;(f)能谱分析

    Figure  5.  Morphology and element content distribution of V2O3 reaction products at 1150 ℃ for 2 h in 0.1 L/min methane

    图  6  (a)失重曲线;(b)不同CH4流量下试验产物物相图谱;(c)不同CH4流量对应VN产物的C、N含量

    Figure  6.  (a) Weight loss curve, (b) phase diagram of experimental products under different CH4 flow rates, (c) C and N contents of vanadium carbonitride products under different CH4 flow rates

    图  7  不同渗氮时间下氮含量变化

    Figure  7.  Changes of nitrogen content with different nitriding time

    图  8  分步碳、氮化试验产物物相图谱(a)及局部对比(b)

    Figure  8.  Phase diagram and local enlargement of products of step-by-step carbonitriding experiment(a) phase diagram, (b) comparison diagram

    图  9  氮化试验产物微观形貌及元素含量

    Figure  9.  Morphology and element content of nitriding experimental product

    图  10  单一CH4、C参与V2O3碳化反应产物物相图谱

    Figure  10.  Phase diagram of single CH4 and C participating in V2O3 carbonization reaction product

    图  11  H2配碳还原与单一H2、碳还原对比失重及对应产物物相图谱

    Figure  11.  Comparative weight loss of single H2, carbon and H2/C blending and the phase diagram of corresponding products

    图  12  H2+N2、N2氮化增重曲线对比及其对应产物形貌

    Figure  12.  Nitriding versus weight gain curve and its corresponding product picture

    表  1  试验方案

    Table  1.   Experimental scheme

    方案 反应物 气氛组成 甲烷流量
    /(L·min−1)
    温度/℃ 保温时间/h 渗氮时间/h
    1 V2O3 CH4+N2 0.1 950 2 0
    2 V2O3 CH4+N2 0.1 1000 2 0
    3 V2O3 CH4+N2 0.1 1050 2 0
    4 V2O3 CH4+N2 0.1 1100 2 0
    5 V2O3 CH4+N2 0.1 1150 2 0
    6 V2O3 CH4+N2 0.15 1150 2 0
    7 V2O3 CH4+N2 0.2 1150 2 0
    8 V2O3 CH4+N2 0.25 1150 2 0
    9 V2O3 CH4+N2 0.05 1150 2 0
    10 V2O3 CH4+N2 0.1 1150 2 1
    11 V2O3 CH4+N2 0.1 1150 2 2
    12 V2O3 CH4+N2 0.1 1150 2 3
    13 V2O3 CH4+N2 0.1 1150 2 4
    14 V2O3 CH4 0.1 1150 2 0
    15 VC N2 1150 2 0
    16 V2O3+C H2 1150 2
    17 V2O3+C 1150 2
    18 V2O3 H2 1150 2
    19 VC N2 1150 2
    20 VC N2+H2 1150 2
    下载: 导出CSV
  • [1] Zhou Zhenyu. Study on the basis and application of deep vanadium extraction and carbon preservation in vanadium-bearing molten iron combined blowing converter [D]. Chongqing: Chongqing University, 2019. (周振宇. 含钒铁水复吹转炉深提钒和保碳的基础及应用研究[D]. 重庆: 重庆大学, 2019.

    Zhou Zhenyu. Study on the basis and application of deep vanadium extraction and carbon preservation in vanadium-bearing molten iron combined blowing converter [D]. Chongqing: Chongqing University, 2019.
    [2] Tan Ruobin. Development and application of vanadium, vanadium compounds and vanadium alloys[J]. Vanadium and Titanium, 1995(1):1-10. (谭若斌. 钒、钒化合物、钒合金的开发应用[J]. 钒钛, 1995(1):1-10.

    Tan Ruobin. Development and application of vanadium, vanadium compounds and vanadium alloys[J]. Vanadium and Titanium, 1995(1): 1-10.
    [3] Duan Xinhui, Srinivasakannan C, Zhang H, et al. Process optimization of the preparation of vanadium nitride from vanadium pentoxide[J]. Arabian Journal for Science and Engineering, 2015, 40(8): 2133-2139.
    [4] Xu Rui, Wu Yuedong, Zhang Guohua. Preparation of high purity vanadium nitride by magnesiothermic reduction of V2O3 followed by nitriding in N2 atmosphere[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(8): 1776-1783. (徐瑞, 吴跃东, 张国华. 用镁热还原法制备高纯氮化钒[J]. 中国有色金属学会学报, 2019, 29(8): 1776-1783.

    Xu Rui, Wu Yuedong, Zhang Guohua. Preparation of high purity vanadium nitride by magnesiothermic reduction of V2O3 followed by nitriding in N2 atmosphere[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(8): 1776-1783.
    [5] Mechnik V A, Bondarenko N A, Kuzin N O. Influence of the addition of vanadium nitride on the structure and specifications of a diamond–(Fe–Cu–Ni–Sn) composite system[J]. Frict. Wear, 2018, 39 (2) : 108-113.
    [6] Wu Yuedong, Zhang Guohua, Zhou Guozhi. A novel process to synthesize high-quality ferrovanadium nitride[J]. Metallurgical and Materials Transactions, 2016,47(6):3405-3412. (吴跃东, 张国华, 周国治. 合成高质量氮化钒铁的新工艺[J]. 冶金材料学报, 2016,47(6):3405-3412. doi: 10.1007/s11663-016-0793-8

    Wu Yuedong, Zhang Guohua, Zhou Guozhi. A novel process to synthesize high-quality ferrovanadium nitride[J]. Metallurgical and Materials Transactions, 2016, 47(6): 3405-3412. doi: 10.1007/s11663-016-0793-8
    [7] Zhong Yu, Chao Dongliang, Deng Shengjue, et al. Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials, 2018,28(38):1706391. (钟宇, 晁栋梁, 邓胜珏, 等. 高性能锂硫电池用多孔碳纤维/氮化钒阵列集成复合支架中的硫限制[J]. 先进功能材料, 2018,28(38):1706391. doi: 10.1002/adfm.201706391

    Zhong Yu, Chao Dongliang, Deng Shengjue, et al. Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials, 2018, 28(38): 1706391. doi: 10.1002/adfm.201706391
    [8] Tao Jun, Tao Ran, Yan Baijun. Experimental measurements of activity coefficients of vanadium in liquid iron[J]. Nonferrous Metals Science and Engineering, 2017,8(1):11-14. (陶俊, 陶然, 闫柏军. 钒在铁液中活度系数的实验研究[J]. 有色金属科学与工程, 2017,8(1):11-14.

    Tao Jun, Tao Ran, Yan Baijun. Experimental measurements of activity coefficients of vanadium in liquid iron[J]. Nonferrous Metals Science and Engineering, 2017, 8(1): 11-14.
    [9] Bondarchuk O, Morel A, Bélanger D, et al. Thin films of pure vanadium nitride: Evidence for anomalous non–faradaic capacitance[J]. Journal of Power Sources, 2016,324(5):439-446.
    [10] Wang Baohua, Wu Chunliang, Lu Yongjie, et al. Study on industrial production of high-nitrogen content VN-alloy[J]. Nonferrous Metals, 2019(7):64-67. (王宝华, 吴春亮, 卢永杰, 等. 工业生产高氮氮化钒合金的研究[J]. 有色金属(冶炼部分), 2019(7):64-67.

    Wang Baohua, Wu Chunliang, Lu Yongjie, et al. Study on industrial production of high-nitrogen content VN-alloy[J]. Nonferrous Metals, 2019(7): 64-67.
    [11] Chu Zhiqiang, Guo Xueyi, Tian Qinghua, et al. Preparation of vanadium nitride by carbothermic reduction and nitrogenization[J]. Materials Science and Engineering of Powder Metallurgy, 2015,20(6):965-970. (储志强, 郭学益, 田庆华, 等. 碳热还原氮化法制备氮化钒[J]. 粉末冶金材料科学与工程, 2015,20(6):965-970. doi: 10.3969/j.issn.1673-0224.2015.06.022

    Chu Zhiqiang, Guo Xueyi, Tian Qinghua, et al. Preparation of vanadium nitride by carbothermic reduction and nitrogenization[J]. Materials Science and Engineering of Powder Metallurgy, 2015, 20(6): 965-970. doi: 10.3969/j.issn.1673-0224.2015.06.022
    [12] Yin Qi. Mechanism study on preparation of vanadium nitride by carbothermal reduction nitridation method[D]. Kunming: Kunming University of Science and Technology, 2023. (尹奇. 碳热还原氮化法制备氮化钒的机理研究[D]. 昆明: 昆明理工大学, 2023.

    Yin Qi. Mechanism study on preparation of vanadium nitride by carbothermal reduction nitridation method[D]. Kunming: Kunming University of Science and Technology, 2023.
    [13] Zhao Shiqiang. Study on the preparation of V(N, O) powder by reduction of V2O5 with ammonia at low temperatures[J]. Nonferrous Metals Science and Engineering, 2019,10(5):28-34. (赵世强. 氨气还原氮化五氧化二钒制备V(N, O)粉体与机理研究[J]. 有色金属科学与工程, 2019,10(5):28-34.

    Zhao Shiqiang. Study on the preparation of V(N, O) powder by reduction of V2O5 with ammonia at low temperatures[J]. Nonferrous Metals Science and Engineering, 2019, 10(5): 28-34.
    [14] Fu Mingkai, Jin Jiahui, Ma Haitao, et al. Thermodynamic analysis of novel vanadium redox materials for solar thermochemical ammonia synthesis from N2 and CH4[J]. International Journal of Hydrogen Energy, 2020,45(4):2569-2577. doi: 10.1016/j.ijhydene.2019.11.122
    [15] Rodrı́guez P, Brito J L, Albornoz A, et al. Comparison of vanadium carbide and nitride catalysts for hydrotreating[J]. Catalysis Communications, 2004,5(2):79-82. doi: 10.1016/j.catcom.2003.11.011
    [16] Choi Jeong Gil, Ha Joseph, Hong Jin Who. Synthesis and catalytic properties of vanadium interstitial compounds[J]. Applied Catalysis A: General, 1998,168(1):47-56. doi: 10.1016/S0926-860X(97)00332-3
    [17] Gao Feng. Fundamental study on preparing vanadium nitride and carbide by carbothermal reduction and nitridation of V2O3[D]. Shenyang: Northeastern University, 2006. (高锋. 三氧化二钒碳热还原氮化制备碳氮化钒的基础研究[D]. 沈阳: 东北大学, 2006.

    Gao Feng. Fundamental study on preparing vanadium nitride and carbide by carbothermal reduction and nitridation of V2O3[D]. Shenyang: Northeastern University, 2006.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  309
  • HTML全文浏览量:  88
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-02
  • 网络出版日期:  2024-10-30
  • 刊出日期:  2024-10-30

目录

    /

    返回文章
    返回