中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔盐电解钛粉的粉末冶金性能研究

邓斌 穆天柱 周翔幸 袁铁锤

邓斌, 穆天柱, 周翔幸, 袁铁锤. 熔盐电解钛粉的粉末冶金性能研究[J]. 钢铁钒钛, 2024, 45(5): 35-42. doi: 10.7513/j.issn.1004-7638.2024.05.005
引用本文: 邓斌, 穆天柱, 周翔幸, 袁铁锤. 熔盐电解钛粉的粉末冶金性能研究[J]. 钢铁钒钛, 2024, 45(5): 35-42. doi: 10.7513/j.issn.1004-7638.2024.05.005
Deng Bin, Mu Tianzhu, Zhou Xiangxing, Yuan Tiechui. Study on powder metallurgical properties of molten salt electrolytic titanium powder[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 35-42. doi: 10.7513/j.issn.1004-7638.2024.05.005
Citation: Deng Bin, Mu Tianzhu, Zhou Xiangxing, Yuan Tiechui. Study on powder metallurgical properties of molten salt electrolytic titanium powder[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 35-42. doi: 10.7513/j.issn.1004-7638.2024.05.005

熔盐电解钛粉的粉末冶金性能研究

doi: 10.7513/j.issn.1004-7638.2024.05.005
详细信息
    作者简介:

    邓斌,1984年出生,男,四川攀枝花人,高级工程师,主要从事熔盐电解提钛、钛粉制备相关研究,E-mail:524123204@qq.com

    通讯作者:

    袁铁锤,1968年出生,男,湖南新宁人,教授,长期从事新材料研发工作,E-mail:tiechuiyuan@csu.edu.cn

  • 中图分类号: TF124,TF823

Study on powder metallurgical properties of molten salt electrolytic titanium powder

  • 摘要: 以电解钛粉为原料,采用模压-烧结的方法制备多孔钛,对电解钛粉的成型和烧结特性进行了研究,最后针对制备的多孔钛的力学性能、孔结构、孔径分布及透气率等性能进行了表征。结果表明:随压制压力的增加,具有二次颗粒特征的电解钛粉颗粒间搭桥空间逐渐消失,可通过成型压力和烧结温度的调节获得不同孔隙率和力学强度的多孔钛。电解钛粉与氢化脱氢钛粉相比具有成型性能良好、更易发生烧结致密化、制件孔隙率高、透气率高、杨氏模量高等特点。使用粒径74~104 μm的电解钛粉在70~110 MPa成型、1110 ℃烧结后的多孔钛,杨氏模量与人体松质骨接近,透气率和最大孔径满足烧结金属过滤元件(GBT6887-2019)TG035、TG020要求,在人体松质骨植入件以及过滤材料领域有应用前景。
  • 图  1  钛粉的形貌

    (a)(b)(c) 电解钛粉(粒径365~833 μm);(d)(e)(f) 电解钛粉(粒径74~104 μm);(g)(h)(i) HDH钛粉(粒径74~104 μm)

    Figure  1.  Morphology of titanium powder

    图  2  不同成型压力获得的料坯密度

    (a)电解钛粉料坯;(b) HDH钛粉料坯

    Figure  2.  Compact density under different forming pressures

    图  3  不同成型压力及温度烧结多孔钛的孔隙率及收缩率

    (a)孔隙率;(b)收缩率

    Figure  3.  Porosity and shrinkage of sintered porous titanium at different molding pressures and temperatures

    图  4  不同烧结温度下保温2 h获得的多孔钛孔形貌

    (a)(b)(c)电解钛粉;(d)(e)(f) HDH钛粉;烧结温度分别为(a)(d)1 000 ℃;(b)(e)1 110 ℃;(c)(f)1 200 ℃

    Figure  4.  Pore morphology at different sintering temperatures(sintering holding time 2 h)

    图  5  电解钛粉不同成型压力获得的多孔钛形貌

    钛粉粒径74~104 μm;烧结条件1110 ℃,2 h

    Figure  5.  The morphology of porous titanium obtained by electrolytic titanium powder under different forming pressures

    (a) 50 MPa; (b) 70 MPa; (c) 110 MPa; (d) 130 MPa; (e) 170 MPa; (f) 190 MPa

    图  6  不同类型钛粉制备多孔钛孔结构

    (a)(d) 365~833 μm电解粉;(b)(e) 74~104 μm 电解粉;(c)(f) 74~104 μm HDH 粉

    Figure  6.  The structures of the porous titanium prepared using different titanium powder

    图  7  不同成型压力制备多孔钛压缩力学强度

    (a)压缩曲线;(b)电解粉多孔钛成型压力与抗压强度关系;钛粉粒径74~104 μm,烧结条件1 100 ℃,2 h

    Figure  7.  Compressive mechanical strength of porous titanium prepared by different forming pressures

    图  8  多孔钛孔径分布

    (a)和(b)为原料分别为365~833 μm和74~104 μm的电解粉;(c)为粒径74~104 μm的HDH粉;制备条件为110 MPa成型,1 110 ℃烧结2 h

    Figure  8.  Pore size distribution of porous titanium

    表  1  钛粉化学成分

    Table  1.   Chemical compositions of titanium powder

    钛粉种类粒径/μm杂质含量/%
    NiCrMnNaCaFeCNHO
    电解粉74~1040.040.02<0.010.020.020.04<0.010.0100.0320.89
    电解粉365~833<0.010.01<0.010.020.01<0.01<0.010.0070.0050.78
    HDH粉74~1040.020.01<0.010.010.010.05<0.010.0100.0220.12
    下载: 导出CSV

    表  2  不同成型压力的料坯1100 ℃烧结后力学强度

    Table  2.   Mechanical strength of billets sintered at 1100 ℃ under different forming pressures

    原料类型成型压力/MPa最大压缩力/kN抗压强度/MPa杨氏模量/GPa
    电解
    钛粉
    705.26473.70.84
    11011.0431572.79
    15017.5072454.07
    19027.1033785.17
    23034.4594886.11
    HDH
    钛粉
    110174.21.51
    150216.43.51
    下载: 导出CSV

    表  3  不同制备条件的钛粉孔隙率及孔径

    Table  3.   Porosity and pore size of titanium powder under different preparation conditions

    原料
    类型
    钛粉粒径/μm 制备条件 孔隙率
    (质量-
    体积)/%
    孔隙率
    (压汞法)/%
    体积中值孔径
    (压汞法)/μm
    成型压力/MPa 烧结温度/℃ 烧结时间/h
    电解
    钛粉
    365~833 110 1110 2 54.2 44.60 26.4
    74~104 150 1110 2 40.1 25.91 11.2
    74~104 110 1110 2 43.9 43.30 21.6
    74~104 110 1200 2 42.1 9.75 10.7
    74~104 190 1200 2 36.6 6.66 5.06
    74~104 50 1200 2 55.8 68.82 172.5
    HDH
    钛粉
    74~104 110 1110 2 39.5 17.31 11.1
    下载: 导出CSV

    表  4  多孔钛的透气率及最大孔径

    Table  4.   Permeability and maximum pore size of porous titanium

    样品
    编号
    原料
    类型
    粒径/μm 制备条件 透气率/
    (m3·h−1·m−2·kPa−1
    气泡最大孔径/μm
    成型
    压力/
    MPa
    烧结
    温度/
    烧结
    时间/
    h
    1 电解粉 365~833 110 1110 2 292 68
    2 电解粉 365~833 70 1110 2 472 92
    3 电解粉 74~104 110 1110 2 207 44
    4 HDH粉 74~104 110 1110 2 100 32
    下载: 导出CSV
  • [1] Barbis D P, Gasior R M, Walker G P, et al. Titanium powders from the hydride-dehydride process[M]//Titanium Powder Metallurgy. Elsevier, 2015: 101-116.
    [2] Allaire, Entezarian, Tsantrizos. Method of production of metal and ceramic powders by plasma atomization: US,US5707419[P]. 1998-01-13.
    [3] Zou Yu, Liao Xianjie, Lai Qi, et al. Research status of preparation technology of spherical titanium powder for 3D printing[J]. Materials China, 2019,38(11):1093-1101. (邹宇, 廖先杰, 赖奇, 等. 3D打印用球形钛粉制备技术研究现状[J]. 中国材料进展, 2019,38(11):1093-1101. doi: 10.7502/j.issn.1674-3962.201808033

    Zou Yu, Liao Xianjie, Lai Qi, et al. Research status of preparation technology of spherical titanium powder for 3D printing[J]. Materials China, 2019, 38(11): 1093-1101. doi: 10.7502/j.issn.1674-3962.201808033
    [4] Withers J C, Loutfy R O. Thermal and electrochemical process for metal production: US,US20050294872[P]. 2005-12-06.
    [5] Jiao Shuqiang, Zhu Hongmin. Novel metallurgical process for titanium production[J]. Journal of Materials Research, 2011,21(9):2172-2175.
    [6] Jiao Shuqiang, Zhu Hongmin. Electrolysis of Ti2CO solid solution prepared by TiC and TiO2[J]. Journal of Alloys and Compounds, 2007,438:243-246.
    [7] Chen G Z, Fray D J, Farthing T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride[J]. Nature, 2000, 407:361-364.
    [8] Zhang Chao, Liu Na, Zhu Guofeng. Innovative clean titanium reduction process-USTB process[J]. Metal World, 2015(1):70-73. (张超, 刘娜, 朱国峰. 新型 USTB 法清洁钛提取技术[J]. 世界金属, 2015(1):70-73.

    Zhang Chao, Liu Na, Zhu Guofeng. Innovative clean titanium reduction process-USTB process[J]. Metal World, 2015(1): 70-73.
    [9] Wu Yinjiang, Liang Yongren. Progress in titanium powder and titanium powder metallurgy products[J]. Materials China, 2011(6):44-50. (吴引江, 梁永仁. 钛粉末及其粉末冶金制品的发展现状[J]. 中国材料进展, 2011(6):44-50.

    Wu Yinjiang, Liang Yongren. Progress in titanium powder and titanium powder metallurgy products[J]. Materials China, 2011(6): 44-50.
    [10] Wang Jianzhong, Ao Qingbo, Jing Peng, et al. Preparation and application of porous titanium[J]. Rare Metal Materials and Engineering, 2022(5):51. (王建忠, 敖庆波, 荆鹏, 等. 多孔钛的制备及应用[J]. 稀有金属材料与工程, 2022(5):51.

    Wang Jianzhong, Ao Qingbo, Jing Peng, et al. Preparation and application of porous titanium[J]. Rare Metal Materials and Engineering, 2022(5): 51.
    [11] Li Changyi. Porous metal materials and their application in stomatology[J]. Journal of Oral Materials and Instruments, 2023,32(1):1-6. (李长义. 多孔金属材料及其在口腔医学中的应用[J]. 口腔材料器械杂志, 2023,32(1):1-6. doi: 10.11752/j.kqcl.2023.01.01

    Li Changyi. Porous metal materials and their application in stomatology[J]. Journal of Oral Materials and Instruments, 2023, 32(1): 1-6. doi: 10.11752/j.kqcl.2023.01.01
    [12] Pan Zhicheng. Study on the morphology and properties of graded porous titanium prepared by TiH2 vacuum sintering[D]. Kunming:Kunming University of Science and Technology, 2023. (潘志铖. TiH2真空烧结制备梯度多孔钛形貌及性能研究[D]. 昆明:昆明理工大学, 2023.

    Pan Zhicheng. Study on the morphology and properties of graded porous titanium prepared by TiH2 vacuum sintering[D]. Kunming: Kunming University of Science and Technology, 2023.
    [13] Peng Yuqing. Process and properties of ordered porous titanium prepared by sintering TiH 2[D]. Kunming:Kunming University of Science and Technology, 2023. (彭玉青. 烧结TiH2制备有序多孔钛工艺与性能研究[D]. 昆明:昆明理工大学, 2023.

    Peng Yuqing. Process and properties of ordered porous titanium prepared by sintering TiH 2[D]. Kunming:Kunming University of Science and Technology, 2023.
    [14] Qian M, Xu W, Brandt M, et al. Additive manufacturing and postprocessing of Ti-6Al-4V for superior mechanical properties[J]. MRS Bull, 2016, 41 (10): 775-783.
    [15] Trevisan F, Calignano F, Aversa A, et al. Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications[J]. J. Appl. Biomater Funct. Mater, 2018,16(2):57-67.
    [16] Laptev A, Vyal O, Bram M, et al. Green strength of powder compacts provided for production of highly porous titanium parts[J]. Powder Metallurgy, 2005, 48: 358-364.
    [17] Yan Beilei, Wang Jun, Yang Tao, et al. Synthesis of Ti powders with different morphologies via controlling the valence state of the titanium ion in KCl-NaCl molten salt[J]. Journal of Electroanalytical Chemistry, 2020,876:114496. doi: 10.1016/j.jelechem.2020.114496
    [18] Zhu Fuxing, Qiu Kehui, Sun Zhaohui, et al. Electrochemical deposition of titanium ions in molten salts[J]. Iron Steel Vanadium Titanium, 2017,38(4):12-18. (朱福兴, 邱克辉, 孙朝晖, 等. 熔盐电解中钛离子电化学沉积行为研究[J]. 钢铁钒钛, 2017,38(4):12-18. doi: 10.7513/j.issn.1004-7638.2017.04.003

    Zhu Fuxing, Qiu Kehui, Sun Zhaohui, et al. Electrochemical deposition of titanium ions in molten salts[J]. Iron Steel Vanadium Titanium, 2017, 38(4): 12-18. doi: 10.7513/j.issn.1004-7638.2017.04.003
    [19] Ashby M F, Evans A G, Fleck N A. Metal foams: A design guide [M]. Liu P S, Wang X S, Li Y X translated. Beijing: Metallurgy Industry Press, 2006: 15-16.
    [20] Liu Jie. Preparation and mechanical properties of porous titanium[D]. Shenyang: Northeastern University, 2015. (刘杰. 多孔钛的制备及力学性能研究[D]. 沈阳: 东北大学, 2015.

    Liu Jie. Preparation and mechanical properties of porous titanium[D]. Shenyang: Northeastern University, 2015.
    [21] Heary R F, Parvathreddy N, Sampath S, et al. Elastic modulus in the selection of interbody implants[J]. Journal of Spine Surgery, 2017, 3(2): 163.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  271
  • HTML全文浏览量:  66
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-07
  • 网络出版日期:  2024-10-30
  • 刊出日期:  2024-10-30

目录

    /

    返回文章
    返回