中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TC4钛合金锻态板材TIG焊后组织与性能研究

张航 祖国庆 王大臣 王雅凤 李涵博 刘杰

张航, 祖国庆, 王大臣, 王雅凤, 李涵博, 刘杰. TC4钛合金锻态板材TIG焊后组织与性能研究[J]. 钢铁钒钛, 2024, 45(5): 63-69. doi: 10.7513/j.issn.1004-7638.2024.05.008
引用本文: 张航, 祖国庆, 王大臣, 王雅凤, 李涵博, 刘杰. TC4钛合金锻态板材TIG焊后组织与性能研究[J]. 钢铁钒钛, 2024, 45(5): 63-69. doi: 10.7513/j.issn.1004-7638.2024.05.008
Zhang Hang, Zu Guoqing, Wang Dachen, Wang Yafeng, Li Hanbo, Liu Jie. Research on TIG welding organizational and performance of TC4 forge alloy[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 63-69. doi: 10.7513/j.issn.1004-7638.2024.05.008
Citation: Zhang Hang, Zu Guoqing, Wang Dachen, Wang Yafeng, Li Hanbo, Liu Jie. Research on TIG welding organizational and performance of TC4 forge alloy[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 63-69. doi: 10.7513/j.issn.1004-7638.2024.05.008

TC4钛合金锻态板材TIG焊后组织与性能研究

doi: 10.7513/j.issn.1004-7638.2024.05.008
基金项目: 吉林省科技发展计划项目(20230201149GX);中国博士后科学基金项目(2022T150074, 2021M693904)。
详细信息
    作者简介:

    张航,1985年出生,男,汉族,吉林长春人,硕士,高级工程师,主要从事材料失效及先进连接技术研究,E-mail:13104407541@163.com

    通讯作者:

    祖国庆,1986年出生,男,汉族,黑龙江齐齐哈尔人,博士,副教授,主要从事金属材料强韧性研究,E-mail:guoqingzu@yeah.net

  • 中图分类号: TF823,TG407

Research on TIG welding organizational and performance of TC4 forge alloy

  • 摘要: 采用非熔化极钨极氩弧焊(TIG)对厚度14 mm的TC4锻态钛合金板材进行多层多道对接焊接试验,研究了焊接接头的金相组织、晶体取向、力学性能。结果表明:TC4钛合金焊接接头焊缝成形美观,焊核区组织多为柱状晶和细长针状马氏体α′相,热影响区为(α+β)+α′相,母材区为(α+β)相。对应于晶体取向关系,焊核区晶粒交错分布按不同物相呈现一定择优取向,其中打底焊位置晶粒取向更多沿<111>与<001>方向,而母材晶粒取向分布不均匀。焊接件的抗拉强度和断后延伸率分别为982 MPa和6.0%,低于母材,弯曲试验均产生裂纹或断裂。从焊缝中心到母材,接头硬度值呈现先降低后升高的变化趋势,其中焊核区盖面焊层的显微硬度略低于打底焊层。
  • 图  1  焊缝表面宏观形貌

    Figure  1.  Macro morphology of welding surface

    图  2  焊缝接头横截面形貌

    Figure  2.  Transverse morphology of the welding joint

    图  3  焊接接头组织形貌

    (a) 盖面焊层;(b) 填充层焊;(c) 打底焊层;(d) 热影响区;(e) 母材区

    Figure  3.  Microstructures of the welding joint

    图  4  接头EBSD晶体取向分布

    (a)盖面焊 ;(b) 填充焊;(c) 打底焊;(d) 母材区

    Figure  4.  Crystal orientation distribution of the welding joint

    图  5  接头焊缝区极图与反极图

    Figure  5.  Polar and Reverse Polar figures of the joint welding zone

    图  6  接头母材区极图与反极图

    Figure  6.  Polar and Reverse Polar figures of the joint base metal

    图  7  拉伸试样断裂位置

    (a) 焊接件;(b) 母材

    Figure  7.  Fracture location of the tensile samples

    图  8  拉伸试样断口形貌

    (a) 焊接件; (b) 母材

    Figure  8.  Fracture morphology of the tensile samples

    图  9  TC4钛合金接头显微硬度测试位置

    Figure  9.  Microhardness testing location of TC4 alloy joint

    图  10  接头显微硬度分布

    (a) 不同焊层横截面方向; (b) 焊核区板材厚度方向

    Figure  10.  Microhardness distribution of the joint

    图  11  弯曲试验形貌

    (a) 焊接件; (b) 母材

    Figure  11.  Bending test morphology

    表  1  TC4钛合金化学成分

    Table  1.   Chemical composition of TC4 alloy %

    AlVFeCNHOTi
    5.5~6.753.5~4.50.300.080.050.0150.20余量
    下载: 导出CSV

    表  2  焊接工艺参数

    Table  2.   Welding parameters

    板厚/mm 焊缝层
    道数
    焊接
    电流/A
    焊接
    电压/V
    焊接速度/(mm·min−1 气体流量/(L·min−1
    14 12~15 110 17~18 60~120 18~20
    下载: 导出CSV

    表  3  ERTi6Al4V钛合金焊丝的化学成分

    Table  3.   Chemical composition of ERTi6Al4V alloy %

    TiAlVFeOCNH
    余量5.5~6.753.5~4.50.250.180.050.050.012
    下载: 导出CSV

    表  4  TC4钛合金接头晶粒分析结果

    Table  4.   Grain analysis results of TC4 welding joint

    位置 Area/µm² D/µm Major/µm GOS/° 位置 Area/µm² D/µm Major/µm GOS/°
    盖面焊 13.80 3.18 5.06 0.97 打底焊 22.76 3.49 4.99 0.86
    填充焊 14.02 3.32 4.92 0.92 母材区 35.66 5.03 6.29 2.70
    下载: 导出CSV

    表  5  拉伸性能

    Table  5.   Tensile mechanical properties

    试样编号抗拉强度σb /MPa断后延伸率δ/%断裂位置
    焊接件-19886.0焊缝
    焊接件-29755.5焊缝
    母材-1102114.0标距内
    母材-2103515.5标距内
    下载: 导出CSV
  • [1] Li Qiuze, Shan Wei, Zhang Yingchun, et al. Technological development and prospect of China`s high speed EMU bogies[J]. Electric Drive for Locomotives, 2023(2):14-35. (李秋泽, 单巍, 张英春, 等. 中国高速动车组转向架技术发展及展望[J]. 机车电传动, 2023(2):14-35.

    Li Qiuze, Shan Wei, Zhang Yingchun, et al. Technological development and prospect of China`s high speed EMU bogies[J]. Electric Drive for Locomotives, 2023(2): 14-35.
    [2] Duan Shihui, Xu Shifeng, Li Lidong, et al. Research on key technology of bogies of railway rapid freight car[J]. Rolling Stock, 2022,60(4):6. (段仕会, 徐世锋, 李立东, 等. 铁路快捷货车转向架关键技术研究[J]. 铁道车辆, 2022,60(4):6. doi: 10.3969/j.issn.1002-7602.2022.04.013

    Duan Shihui, Xu Shifeng, Li Lidong, et al. Research on key technology of bogies of railway rapid freight car[J]. Rolling Stock, 2022, 60(4): 6. doi: 10.3969/j.issn.1002-7602.2022.04.013
    [3] Guo F, Wu S C, Liu J X, et al. Fatigue life assessment of bogie frames in high-speed railway vehicles considering gear meshing[J]. International Journal of Fatigue, 2020, 132:105353.
    [4] Feng Shengrong, Ming Zhu, Bai Guanshun, et al. Microstructure and properties of TA15 titanium alloy fabricated by wire and arc additive manufacturing[J]. Ordnance Material Science and Engineering, 2023,46(4):101-105. (丰生荣, 明珠, 柏关顺, 等. 电弧增材制造TA15钛合金的组织与性能研究[J]. 兵器材料科学与工程, 2023,46(4):101-105.

    Feng Shengrong, Ming Zhu, Bai Guanshun, et al. Microstructure and properties of TA15 titanium alloy fabricated by wire and arc additive manufacturing[J]. Ordnance Material Science and Engineering, 2023, 46(4): 101-105.
    [5] Chen Caina, Zeng Zhi, Zhang Yao, et al. Effect of thermal isostatic pressing on microstructure and properties of TB6 titanium alloy[J]. Hot Working Technology, 2023,52(7):110-112. (陈彩娜, 曾志, 张耀, 等. 热等静压工艺对TB6钛合金组织和性能的影响[J]. 热加工工艺, 2023,52(7):110-112.

    Chen Caina, Zeng Zhi, Zhang Yao, et al. Effect of thermal isostatic pressing on microstructure and properties of TB6 titanium alloy[J]. Hot Working Technology, 2023, 52(7): 110-112.
    [6] Zhang Le, Liu Yingying, Shi Xiaonan, et al. Microstructure and tensile properties of TC18 titanium alloy[J]. Transactions of Materials and Heat Treatment, 2017,38(6):54-60. (张乐, 刘莹莹, 史晓楠, 等. TC18钛合金的显微组织及拉伸性能[J]. 材料热处理学报, 2017,38(6):54-60.

    Zhang Le, Liu Yingying, Shi Xiaonan, et al. Microstructure and tensile properties of TC18 titanium alloy[J]. Transactions of Materials and Heat Treatment, 2017, 38(6): 54-60.
    [7] Zhao Xiaolong, Wang Bin, Gong Shuili, et al. Study on microstructure and mechanical properties of laser welded joint of 2 mm thick TC4 titanium alloy[J]. Hot Working Technology, 2017(9):3. (赵晓龙, 王彬, 巩水利, 等. 2.0mm厚TC4钛合金激光焊接接头组织与力学性能研究[J]. 热加工工艺, 2017(9):3.

    Zhao Xiaolong, Wang Bin, Gong Shuili, et al. Study on microstructure and mechanical properties of laser welded joint of 2 mm thick TC4 titanium alloy[J]. Hot Working Technology, 2017(9): 3.
    [8] Pramod Kumar, Sinha A. Effect of heat input in pulsed Nd: YAG laser welding of titanium alloy (Ti6Al4V) on microstructure and mechanical properties[J]. Journal of Neurosurgical Sciences, 2019,63(3):673-689.
    [9] Mou Gang, Hua Xueming, Xu Xiaobo, et al. Comparative study on welding procedure and performance of 8 mm thick TC4 titanium alloy with TIG and MIG[J]. Electric Welding Machine, 2020,50(4):7. (牟刚, 华学明, 徐小波, 等. 8mm厚TC4钛合金TIG, MIG焊接工艺及性能对比研究[J]. 电焊机, 2020,50(4):7.

    Mou Gang, Hua Xueming, Xu Xiaobo, et al. Comparative study on welding procedure and performance of 8 mm thick TC4 titanium alloy with TIG and MIG[J]. Electric Welding Machine, 2020, 50(4): 7.
    [10] Lu Xin. Microstructures and defect analysis of TC4 titanium alloy joints by the TIG welding[J]. Iron Steel Vanadium Titanium, 2018,39(4):7. (陆鑫. TC4钛合金TIG焊接头组织及缺陷分析[J]. 钢铁钒钛, 2018,39(4):7. doi: 10.7513/j.issn.1004-7638.2018.04.013

    Lu Xin. Microstructures and defect analysis of TC4 titanium alloy joints by the TIG welding[J]. Iron Steel Vanadium Titanium, 2018, 39(4): 7. doi: 10.7513/j.issn.1004-7638.2018.04.013
    [11] Gao Xiaogang, Dong Junhui, Han Xu. Effect of microstructure on properties of TIG welded joint for TC4 titanium alloy[J]. Welding & Joining, 2016(7):5. (高晓刚, 董俊慧, 韩旭. TC4钛合金TIG焊接头组织对性能的影响[J]. 焊接, 2016(7):5. doi: 10.3969/j.issn.1001-1382.2016.07.006

    Gao Xiaogang, Dong Junhui, Han Xu. Effect of microstructure on properties of TIG welded joint for TC4 titanium alloy[J]. Welding & Joining, 2016(7): 5. doi: 10.3969/j.issn.1001-1382.2016.07.006
    [12] Wei Zhixiang, Li Guoxuan, Wang Yueyong, et al. Microstructure and properties of TC4 titanium alloy produced by TIG arc additive manufacturing[J]. Nonferrous Metals Engineering, 2021,11(10):7. (魏志祥, 李国选, 汪月勇, 等. TIG电弧增材制造TC4钛合金的组织与性能[J]. 有色金属工程, 2021,11(10):7. doi: 10.3969/j.issn.2095-1744.2021.10.003

    Wei Zhixiang, Li Guoxuan, Wang Yueyong, et al. Microstructure and properties of TC4 titanium alloy produced by TIG arc additive manufacturing[J]. Nonferrous Metals Engineering, 2021, 11(10): 7. doi: 10.3969/j.issn.2095-1744.2021.10.003
    [13] Wang Xuyang, Quan Yinzhu, Li Ju, et al. Microstructure and texture evolution in linear friction welded TC11 titanium alloy joint[J]. Chinese Journal of Rare Metals, 2023,47(5):692-700. (王旭扬, 权银洙, 李菊, 等. TC11钛合金线性摩擦焊接头组织及织构演变机制[J]. 稀有金属, 2023,47(5):692-700.

    Wang Xuyang, Quan Yinzhu, Li Ju, et al. Microstructure and texture evolution in linear friction welded TC11 titanium alloy joint[J]. Chinese Journal of Rare Metals, 2023, 47(5): 692-700.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  269
  • HTML全文浏览量:  79
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-26
  • 网络出版日期:  2024-10-30
  • 刊出日期:  2024-10-30

目录

    /

    返回文章
    返回