中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiCf/TC25G复合材料界面热稳定性研究

孙武 张育铭 杨丽娜 杨青 刘迪 王玉敏

孙武, 张育铭, 杨丽娜, 杨青, 刘迪, 王玉敏. SiCf/TC25G复合材料界面热稳定性研究[J]. 钢铁钒钛, 2024, 45(5): 74-82. doi: 10.7513/j.issn.1004-7638.2024.05.010
引用本文: 孙武, 张育铭, 杨丽娜, 杨青, 刘迪, 王玉敏. SiCf/TC25G复合材料界面热稳定性研究[J]. 钢铁钒钛, 2024, 45(5): 74-82. doi: 10.7513/j.issn.1004-7638.2024.05.010
Sun Wu, Zhang Yuming, Yang Lina, Yang Qing, Liu Di, Wang Yumin. Study on interfacial thermal stability of SiCf/TC25G composites[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 74-82. doi: 10.7513/j.issn.1004-7638.2024.05.010
Citation: Sun Wu, Zhang Yuming, Yang Lina, Yang Qing, Liu Di, Wang Yumin. Study on interfacial thermal stability of SiCf/TC25G composites[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 74-82. doi: 10.7513/j.issn.1004-7638.2024.05.010

SiCf/TC25G复合材料界面热稳定性研究

doi: 10.7513/j.issn.1004-7638.2024.05.010
基金项目: 国家部委计划重点研究项目(No.TMC-00-02)。
详细信息
    作者简介:

    孙武,1999年生,男,硕士研究生,主要从事纤维增强钛基复合材料研究,E-mail:sunwu1102@163.com

    通讯作者:

    杨丽娜,1983年生,女,辽宁辽阳人,博士,副研究员,主要从事纤维增强钛基复合材料研究,E-mail:lnyang@imr.ac.cn

  • 中图分类号: TF823,TB333

Study on interfacial thermal stability of SiCf/TC25G composites

  • 摘要: TMCs在高温服役长时使用过程中,基体与纤维会发生严重的界面反应,导致复合材料力学性能下降。以磁控溅射先驱丝法+热等静压工艺制备的SiCf/TC25G复合材料作为研究对象,结合TC25G钛合金服役温度,系统设计了不同热暴露条件下复合材料界面热稳定性试验,分析了热等静压态和热暴露态SiCf/TC25G复合材料界面形貌和界面产物。结合SEM、TEM、EPMA、XRD、EBSD等技术分析表明,热等静压态的SiCf/TC25G复合材料界面反应层主要产物为TiC,反应层靠近基体侧和基体中存在硅化物的析出。随着热暴露温度和保温时间增加,界面反应层厚度增加。根据界面反应层增量,总结出SiCf/TC25G复合材料界面长大规律,利用Arrhenius公式计算获得SiCf/TC25G复合材料界面反应层长大激活能为50.53 kJ/mol,反应层长大指数因子为1.23×10−7 m/s1/2
  • 图  1  SiCf/TC25G复合材料试样棒毛坯制备流程

    Figure  1.  Schematic of SiCf/TC25G composites sample blank preparation (HIP—hot isostatic pressing)

    图  2  热等静压态SiCf/TC25G复合材料的SEM形貌

    (a) 横截面;(b) 界面

    Figure  2.  SEM images of HIPed SiCf/TC25G composites

    图  3  热等静压态SiCf/TC25G复合材料界面区域的XRD谱

    Figure  3.  XRD spectra of the interface region of HIPed SiCf/TC25G composites

    图  4  热等静压态SiCf/TC25G复合材料界面的背散射电子像和EPMA元素面分布

    (a)EBSD; (b)Si; (c)W; (d)C; (e)Ti ; (f)Al; (g)Sn; (h)M; (i)Zr

    Figure  4.  Backscattered electron image and EPMA maps of elements in the interface region of HIPed SiCf/TC25G composites

    图  5  热等静压态SiCf/TC25G复合材料界面的TEM像及EDS元素面扫图

    (a)TEM; (b)Si; (c)W; (d)C; (e)Ti; (f)Al; (g)Sn; (h)Mo; (i) Zr

    Figure  5.  TEM image and corresponding EDS maps of elements of the interface of HIPed SiCf/TC25 G composites

    图  6  热等静压态SiCf/TC25G复合材料界面的TEM及不同区域的SAED花样

    (a)图5(a)局部区域放大;(b)~(f)图5(a)中I、II、III、IV和V位置衍射花样

    Figure  6.  Magnification of the rectangle region and SAED patterns regions

    图  7  热等静压态和不同热暴露温度保温300 h后SiCf/TC25G复合材料界面反应层及基体形貌的SEM像

    (a)热等静压成型态;(b)550 ℃;(c)700 ℃;(d)850 ℃

    Figure  7.  SEM images of interfacial reaction layer and matrix of HIPed SiCf/TC25G composites after 300 h exposure to different temperatures

    图  8  热等静压态和不同热暴露温度保温300 h后SiCf/TC25G复合材料局部基体的EBSD相分布

    (a) 热等静压态; (b) 550 ℃; (c) 700 ℃;(d) 850 ℃

    Figure  8.  EBSD phase distribution images of matrix in HIPed SiCf/TC25G composites, and samples after 300 h thermal exposure to different temperatures

    图  9  SiCf/TC25G复合材料不同热暴露条件下界面反应层和基体微观形貌的SEM像

    (a)~(d)550 ℃; (e)~(h)700 ℃; (i)~(l)850 ℃ ; (a)(e)( i) 50 h; (b)(f)( j) 100 h; (c)(g)(k)200 h; (d)(h)(l)300 h

    Figure  9.  SEM images of interfacial reaction layer and matrix of SiCf/TC25G composites after thermal exposure

    图  10  SiCf/TC25G复合材料在不同热暴露温度下保温300 h后的XRD谱

    Figure  10.  XRD spectra of SiCf/TC25G composites under different thermal exposure temperatures for 300 h

    图  11  SiCf/TC25G复合材料850 ℃、300 h热暴露处理样品背散射电子像和EPMA元素面分布

    (a)EBSD; (b)Si; (c)W; (d)C; (e)Ti; (f)Al; (g)Sn; (h)Mo, (i)Zr

    Figure  11.  Backscattered electron image and EPMA maps of elements in SiCf/TC25G composites after thermal exposal at 850 ℃ for 300 h

    图  12  SiCf/TC25G复合材料从热等静压到850 ℃热暴露保温300 h过程中界面物相分布和各元素扩散路径示意

    (a)先驱丝态;(b)热等静压成型;(c)热暴露前期;(d)热暴露后期

    Figure  12.  Schematics showing the interface phase distributions and element diffusion paths of SiCf/TC25G composites during HTP state to thermal exposure to 850 ℃ for 300 h

    图  13  SiCf/TC25G复合材料界面反应动力学曲线

    Figure  13.  Interfacial reactive kinetic curves of SiCf/TC25G composites

    图  14  SiCf/TC25G复合材料界面反应层长大Arrhenius关系

    Figure  14.  Arrhenius diagram of the interfacial reaction layer growth of SiCf/TC25G composites

    表  1  热等静压态和不同热暴露温度保温300 h后SiCf/TC25G复合材料的晶粒平均面积尺寸

    Table  1.   The average grain area sizes of HIPed SiCf/TC25G composites after 300 h thermal exposure to different temperatures

    物相 热等静压态 平均面积/μm2
    550 ℃/300 h 700 ℃/300 h 850 ℃/300 h
    α-Ti 0.52 0.65 1.07 2.21
    β-Ti 0.11 0.14 0.22 0.80
    TiC 0.15 0.22 0.21 0.36
    (Ti,Zr)6Si3 0.05 0.09 0.07 0.16
    下载: 导出CSV

    表  2  热等静压态和不同热暴露温度保温300 h后SiCf/TC25G复合材料不同相在基体中的面积分数

    Table  2.   The area fraction of different phases in SiCf/TC25G composites matrix

    物相 热等静压态 面积分数/%
    550 ℃/300 h 700 ℃/300 h 850 ℃/300 h
    α-Ti 83.2 81.0 80.4 64.2
    β-Ti 15.7 15.7 12.3 23.7
    TiC 0.9 2.8 6.9 11.0
    (Ti,Zr)6 Si3 0.1 0.4 0.3 1.0
    下载: 导出CSV

    表  3  SiCf/TC25G复合材料在不同热暴露条件下界面反应层的厚度

    Table  3.   Thicknesses of interfacial reaction layer of SiCf/TC25G composites under different thermal exposure conditions

    温度/ ℃ 反应层厚度/μm
    50 h 100 h 200 h 300 h
    550 0.93±0.28 0.94±0.24 0.95±0.32 0.97±0.27
    700 0.95±0.26 0.97±0.27 0.98±0.25 0.98±0.23
    850 1.17±0.32 1.31±0.29 1.52±0.32 1.71±0.47
    下载: 导出CSV

    表  4  不同材料的指数因子(k0)和界面反应层长大激活能(Q)

    Table  4.   Exponential factors (k0) and interfacial reactive layer growth activation energy (Q) of different materials

    牌号 k0 /(m·s−1/2) Q/(kJ·mol−1)
    SiCf /TC17[16] 4.64×10−3 138
    SiCf /Ti60[24] 2.27×10−4 118
    SiCf /Ti65[25] 2.37×10−5 93
    SiCf /Ti2AlNb[26] 2.80×10−4 24.27
    SiCf /TC25G 1.23×10−7 50.53
    下载: 导出CSV
  • [1] Fu Hengzhi. Challenges and development trends of aero-engine materials in the future[J]. J. Aerona. Mater., 1998(4):54. (傅恒志. 未来航空发动机材料面临的挑战与发展趋向[J]. 航空材料学报, 1998(4):54.

    Fu Hengzhi. Challenges and development trends of aero-engine materials in the future[J]. J. Aerona. Mater., 1998(4): 54.
    [2] Mackay R, Brindley P, Froes F. Continuous fiber-reinforced titanium aluminide composites[J]. JOM, 1991,43:23.
    [3] Larsen J M, Russ S M, Jones J. An evaluation of fiber-reinforced titanium matrix composites for advanced high-temperature aerospace applications[J]. Metall. Mater. Trans. A., 1995,26:3211. doi: 10.1007/BF02669450
    [4] Yang Rui, Shi Nanlin, Wang Yumin, et al. Research progress of SiC fiber reinforced titanium matrix composites[J]. Titanium Ind. Prog., 2005(5):37. (杨锐, 石南林, 王玉敏, 等. SiC纤维增强钛基复合材料研究进展[J]. 钛工业进展, 2005(5):37.

    Yang Rui, Shi Nanlin, Wang Yumin, et al. Research progress of SiC fiber reinforced titanium matrix composites[J]. Titanium Ind. Prog., 2005(5): 37.
    [5] Zhang Xuesong, Chen Yongjun, Hu Junling. Recent advances in the development of aerospace materials[J]. Prog. Aeosp. Sci., 2018,97:22-34. doi: 10.1016/j.paerosci.2018.01.001
    [6] Wang Yumin, Zhang Guoxing, Zhang Xu, et al. Research progress of continuous SiC fiber reinforced titanium matrix composites[J]. Acta. Metall. Sin. , 2016, 52(10): 1153. (王玉敏, 张国兴, 张旭, 等. 连续SiC纤维增强钛基复合材料研究进展[J]. 金属学报, 2016, 52(10): 1153.

    Wang Yumin, Zhang Guoxing, Zhang Xu, et al. Research progress of continuous SiC fiber reinforced titanium matrix composites[J]. Acta. Metall. Sin. , 2016, 52(10): 1153.
    [7] Leyens C, Kocian F, Hausmann J, et al. Materials and design concepts for high performance compressor components[J]. Aerosp. Sci. Technol., 2003,7:201. doi: 10.1016/S1270-9638(02)00013-5
    [8] Singh M, Dickerson R M, Olmstead F A, et al. SiC (SCS-6) fiber reinforced–reaction formed SiC matrix composites: Microstructure and interfacial properties[J]. J. Mater. Res., 2011,12(3):706-713.
    [9] Fu Y C, Shi N L, Zhang D Z, et al. Effect of C coating on the interfacial microstructure and properties of SiC fiber-reinforced Ti matrix composites[J]. Mater. Sci. Eng. A., 2006,426(1):278.
    [10] Baik K H, Grant P S. Chemical interaction between sigma 1140+ SiC fibre and Ti-6Al-4V[J]. Scr. Mater., 2001,44(4):607. doi: 10.1016/S1359-6462(00)00649-7
    [11] Yang Yanqing, Zhu Yan, Zhang Jingyu, et al. Interfacial reaction of SCS-6SiC fiber reinforced titanium matrix composites[J]. Acta. Metall. Sin., 2002,38(suppl):4. (杨延清, 朱艳, 张晶宇, 等. SCS-6SiC纤维增强钛基复合材料的界面反应[J]. 金属学报, 2002,38(增刊):4.

    Yang Yanqing, Zhu Yan, Zhang Jingyu, et al. Interfacial reaction of SCS-6SiC fiber reinforced titanium matrix composites[J]. Acta. Metall. Sin., 2002, 38(suppl): 4.
    [12] Liu Qiaomu. Microstructure and texture of wrought TC25G titanium alloy bar[J]. Trans. Mater. Heat Treat., 2018,39(6):5. (刘巧沐. 锻态TC25G钛合金棒材的显微组织和织构[J]. 材料热处理学报, 2018,39(6):5.

    Liu Qiaomu. Microstructure and texture of wrought TC25G titanium alloy bar[J]. Trans. Mater. Heat Treat., 2018, 39(6): 5.
    [13] Yang Qing. Study on preparation and tensile properties of SiCf/BT25 composites [D]. Beijing: University of Chinese Academy of Sciences, 2018. (杨青. SiCf/BT25复合材料制备工艺及其拉伸性能研究 [D]. 北京:中国科学院大学, 2018.

    Yang Qing. Study on preparation and tensile properties of SiCf/BT25 composites [D]. Beijing: University of Chinese Academy of Sciences, 2018.
    [14] Wu Ming, Zhang Kan, Huang Hao, et al. Interfacial reactions in SiCf/C/Ti17 composites dominated by texture of carbon coatings[J]. Carbon, 2017,124:238. doi: 10.1016/j.carbon.2017.08.065
    [15] Xiao Peng. Study on interface optimization and residual stress of SiC fiber reinforced Ti-22Al-26Nb composites [D]. Beijing: Graduate School of Chinese Academy of Sciences, 2010. (肖鹏. SiC纤维增强Ti-22Al-26Nb复合材料的界面优化及残余应力研究[D]. 北京:中国科学院研究生院, 2010.

    Xiao Peng. Study on interface optimization and residual stress of SiC fiber reinforced Ti-22Al-26Nb composites [D]. Beijing: Graduate School of Chinese Academy of Sciences, 2010.
    [16] Zhang Xu, Wang Yumin, Lei Jiafeng, et al. Interfacial thermal stability and element diffusion mechanism of SiCf/TC17 composites[J]. Acta. Metall. Sin., 2012,48(11):1306. (张旭, 王玉敏, 雷家峰, 等. SiCf/TC17复合材料界面热稳定性及元素扩散机理[J]. 金属学报, 2012,48(11):1306. doi: 10.3724/SP.J.1037.2012.00347

    Zhang Xu, Wang Yumin, Lei Jiafeng, et al. Interfacial thermal stability and element diffusion mechanism of SiCf/TC17 composites[J]. Acta. Metall. Sin., 2012, 48(11): 1306. doi: 10.3724/SP.J.1037.2012.00347
    [17] Dudek H J, Borath R, Leucht R, et al. Transmission electron microscopy of the fibre-matrix interface in SiC-SCS-6-fibre-reinforced IMI834 alloys[J]. J. Mater. Sci., 1997,32(20):5355. doi: 10.1023/A:1018623012948
    [18] Lü Xianghong, Yang Yanqing, Ma Zhijun, et al. Research progress on interfacial reaction-diffusion of SiC continuous fiber reinforced Ti matrix composites[J]. Rare Metal Mat. Eng., 2006,35(1):164. (吕祥鸿, 杨延清, 马志军, 等. SiC连续纤维增强Ti基复合材料界面反应扩散研究进展[J]. 稀有金属材料与工程, 2006,35(1):164. doi: 10.3321/j.issn:1002-185X.2006.01.042

    Lü Xianghong, Yang Yanqing, Ma Zhijun, et al. Research progress on interfacial reaction-diffusion of SiC continuous fiber reinforced Ti matrix composites[J]. Rare Metal Mat. Eng., 2006, 35(1): 164. doi: 10.3321/j.issn:1002-185X.2006.01.042
    [19] Zeng Kejun, Jin Zhanpeng. Interfacial reaction mechanism of SiC fiber reinforced titanium matrix composites[J]. Acta Mater. Compos. Sin., 1989(4):5. (曾科军, 金展鹏. SiC纤维增强钛基复合材料界面反应机理[J]. 复合材料学报, 1989(4):5.

    Zeng Kejun, Jin Zhanpeng. Interfacial reaction mechanism of SiC fiber reinforced titanium matrix composites[J]. Acta Mater. Compos. Sin., 1989(4): 5.
    [20] Ghosal P, Prasad R, Ramachandra C. Microstructural stability of the (α + β) Solution-treated and quenched near- α titanium alloy Ti-5.8Al-4Sn-3.5Zr-0.70Nb-0.50Mo-0.35Si-0.06C[J]. Metall. Mater. Trans. A., 1995,26(10):2751. doi: 10.1007/BF02669431
    [21] Madsen A, Andrieu E, Ghonem H. Microstructural changes during aging of a near-α titanium alloy[J]. Mater. Sci. Eng. A., 1993,171(1-2):191. doi: 10.1016/0921-5093(93)90406-5
    [22] Yang J M, Jeng S M. Interfacial reactions in titanium-matrix composites[J]. JOM, 1989,41(11):56. doi: 10.1007/BF03220385
    [23] Martineau P, Lahaye M, Pailer R, et al. SiC filament/titanium matrix composites regarded as model composites[J]. J. Mater. Sci., 1984,19(8):2731. doi: 10.1007/BF00550831
    [24] Kong Xu, Wang Yumin, Zhang Xu, et al. Thermal stability of SiCf/Ti60 composites[J]. Rare Metal Mat. Eng., 2017(S1):5. (孔旭, 王玉敏, 张旭, 等. SiCf/Ti60复合材料热稳定性研究[J]. 稀有金属材料与工程, 2017(S1):5.

    Kong Xu, Wang Yumin, Zhang Xu, et al. Thermal stability of SiCf/Ti60 composites[J]. Rare Metal Mat. Eng., 2017(S1): 5.
    [25] Wang Chao, Zhang Xu, Wang Yumin, et al. Mechanism of interfacial reaction and matrix transformation of SiCf/Ti65 composites[J]. Acta. Metall. Sin., 2020,56(9):1275. (王超, 张旭, 王玉敏, 等. SiCf/Ti65复合材料界面反应与基体相变机理[J]. 金属学报, 2020,56(9):1275.

    Wang Chao, Zhang Xu, Wang Yumin, et al. Mechanism of interfacial reaction and matrix transformation of SiCf/Ti65 composites[J]. Acta. Metall. Sin., 2020, 56(9): 1275.
    [26] Fu Yuechun, Wei Zeqi, Yang Lina, et al. Interfacial reaction and thermal stability of SiCf/Ti2AlNb composites[J]. J Northeastern Univ(Nat Sci), 2022(8):43. (符跃春, 韦泽麒, 杨丽娜, 等. SiCf/Ti2AlNb复合材料的界面反应及热稳定性[J]. 东北大学学报: 自然科学版, 2022(8):43.

    Fu Yuechun, Wei Zeqi, Yang Lina, et al. Interfacial reaction and thermal stability of SiCf/Ti2AlNb composites[J]. J Northeastern Univ(Nat Sci), 2022(8): 43.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  106
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-16
  • 网络出版日期:  2024-10-30
  • 刊出日期:  2024-10-30

目录

    /

    返回文章
    返回