中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预应变对TA2力学性能的影响及本构模型的建立

李一帆 代巧 郭成 冯立斌

李一帆, 代巧, 郭成, 冯立斌. 预应变对TA2力学性能的影响及本构模型的建立[J]. 钢铁钒钛, 2024, 45(5): 83-90. doi: 10.7513/j.issn.1004-7638.2024.05.011
引用本文: 李一帆, 代巧, 郭成, 冯立斌. 预应变对TA2力学性能的影响及本构模型的建立[J]. 钢铁钒钛, 2024, 45(5): 83-90. doi: 10.7513/j.issn.1004-7638.2024.05.011
Li Yifan, Dai Qiao, Guo Cheng, Feng Libin. Influence of pre strain on the mechanical properties of TA2 and the establishment of constitutive model[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 83-90. doi: 10.7513/j.issn.1004-7638.2024.05.011
Citation: Li Yifan, Dai Qiao, Guo Cheng, Feng Libin. Influence of pre strain on the mechanical properties of TA2 and the establishment of constitutive model[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 83-90. doi: 10.7513/j.issn.1004-7638.2024.05.011

预应变对TA2力学性能的影响及本构模型的建立

doi: 10.7513/j.issn.1004-7638.2024.05.011
基金项目: 江苏省研究生科研与实践创新计划项目(XSJCX22_21)。
详细信息
    作者简介:

    李一帆,1998年出生,男,江苏徐州人,硕士研究生,研究方向:工业纯钛TA2疲劳裂纹扩展行为,E-mail:823936266@qq.com

    通讯作者:

    代巧,1986年出生,女,四川资中人,博士,副教授,研究方向:机械结构优化设计与强度评定、可靠性分析与寿命预测,E-mail:daiqiao@126.com

  • 中图分类号: TF823,TG146.2

Influence of pre strain on the mechanical properties of TA2 and the establishment of constitutive model

  • 摘要: 为研究预应变对TA2力学性能的影响,对原始材料和预应变量为10%、20%和30%的TA2进行室温拉伸试验;根据预应变对TA2力学性能的影响规律,引入预应变量对Hollomon 模型、Ludwik 模型和Swift 模型进行修正,以预测预应变TA2的力学行为。结果表明,随预应变量的增加,TA2的屈服强度显著增大、抗拉强度小幅增大,而断后伸长率、强塑积和应变硬化指数减小。预应变通过消耗塑性性能来提升TA2的强度,TA2塑性应变能密度和断裂应变能密度随预应变量的增加而明显减小。各修正模型预测结果与试验值相关性系数的平均值分别为0.98620.99940.9744,最大预测误差为6.34%、8.33%、16.42%,其中Hollomon 模型结构精简且具有良好的预测精度,是描述预应变对TA2力学行为影响的最佳选择。
  • 图  1  TA2拉伸试样尺寸(单位:mm)

    Figure  1.  Geometry of TA2 tensile specimen

    图  2  不同预应变量下的TA2应力-应变曲线

    (a)工程应力应变曲线;(b)真实应力应变曲线

    Figure  2.  Stress-strain curves of TA2 under different prestrain variables

    图  3  屈服强度、抗拉强度和断后伸长率随预应变的变化

    Figure  3.  The variation of yield strength, tensile strength, and elongation after fracture with prestrain

    图  4  强塑积及屈强比随预应变的变化

    Figure  4.  The variation of strength plastic product and yield strength ratio with prestrain

    图  5  TA2拉伸应变

    (a) 拉伸应变能密度;(b) TA2拉伸应变能密度随预应变量的变化

    Figure  5.  The tensile strain of TA2

    图  6  能量耗散变量DU随预应变的变化

    Figure  6.  The variation of energy dissipation DU with prestrain

    图  7  Hollomon 模型参数与预应变量关联

    Figure  7.  Correlation between Hollomon model parameters and prestrain

    (a)KH-P;(b)nH-P

    图  8  Ludwik 模型参数与预应变量关联

    Figure  8.  Correlation between Ludwik model parameters and prestrain

    (a)KL-P;(b)σS-P;(c)nL-P

    图  9  Swift 模型参数与预应变量关联

    Figure  9.  Correlation between Swift model parameters and prestrain: (a)KS-P;(b)ε0-P;(c)nS-P

    (a)KS-P;(b)ε0-P;(c)nS-P

    图  10  修正的本构模型预测结果与试验数据对比

    (a) Hollomon 模型;(b) Ludwik 模型;(c) Swift 模型

    Figure  10.  Comparison between the improved constitutive models prediction results and experimental data: (a) Hollomon model; (b) Ludwik model; (c) Swift model

    表  1  TA2化学成分

    Table  1.   Main chemical composition of TA2 %

    TiOFeCNH
    >990.130.080.020.010.001
    下载: 导出CSV

    表  2  各本构模型参数

    Table  2.   Parameters of each constitutive model

    应变/% Hollomon模型 Ludwik模型 Swift模型
    KH nH KL σS nL KS ε0 nS
    0 556 0.27613 402.49 250.52 0.83904 495.97 0.04 0.17316
    10 552 0.17515 413.49 308.75 0.81699 523.58 0.01594 0.13123
    20 543 0.11325 363.73 388.45 0.79863 522.85 0.01236 0.08834
    30 525 0.06853 278.48 400.09 0.74608 514.37 0.00382 0.05758
    下载: 导出CSV

    表  3  各修正模型预测结果的相关性系数和最大误差

    Table  3.   The correlation coefficients and maximum errors of the predicted results of each modified model

    P=0% P=10% P=20% P=30%
    R δmax/% R δmax/% R δmax/% R δmax/%
    Hollomon 模型 0.9913 6.34 0.9870 3.89 0.9823 3.36 0.9841 2.63
    Ludwik 模型 0.9996 8.25 0.9996 8.33 0.9994 8.03 0.9991 4.14
    Swift 模型 0.9643 16.42 0.9788 5.80 0.9758 3.61 0.9786 6.11
    下载: 导出CSV
  • [1] Liu G, Sun H, Wang E, et al. Effect of deformation on the microstructure of cold-rolled TA2 alloy after low-temperature nitriding[J]. Coatings, 2021,11(8):1011. doi: 10.3390/coatings11081011
    [2] Tian Xiaodan. Key points for manufacturing supervision and inspection of titanium pressure vessels[J]. Chemical Equipment Technology, 2020,41(4):52-54. (田小丹. 钛制压力容器制造监检要点[J]. 化工装备技术, 2020,41(4):52-54.

    Tian Xiaodan. Key points for manufacturing supervision and inspection of titanium pressure vessels[J]. Chemical Equipment Technology, 2020, 41(4): 52-54.
    [3] Liu P, Wen Z, Wang Z, et al. Effect of pre-strain on microstructure and stamping ability of TA2 titanium alloy and H260 low-alloy steel[C]. Journal of Physics: Conference Series. IOP Publishing, 2023, 2483(1): 012064.
    [4] Li Kaishang, Peng Jian, Peng Jian. The influence of pre strain on the mechanical behavior of austenitic stainless steel and the construction of a constitutive model[J]. Materials Engineering, 2018,46(11):148-154. (李凯尚, 彭剑, 彭健. 预应变对奥氏体不锈钢力学行为的影响及本构模型的构建[J]. 材料工程, 2018,46(11):148-154. doi: 10.11868/j.issn.1001-4381.2017.000815

    Li Kaishang, Peng Jian, Peng Jian. The influence of pre strain on the mechanical behavior of austenitic stainless steel and the construction of a constitutive model[J]. Materials Engineering, 2018, 46(11): 148-154. doi: 10.11868/j.issn.1001-4381.2017.000815
    [5] Xu Jingsheng, Wang Manfu. Effect of tensile pre-strain on mechanical properties of austenitic 301 stainless steel[J]. Journal of Materials Engineering and Performance, 19 Octobe2023: 1-8.
    [6] Chang Le, Zhou Changyu, He Xiaohua. The effects of prestrain and subsequent annealing on tensile properties of CP-Ti[J]. Metals, 2017,7(3):99. doi: 10.3390/met7030099
    [7] Peng Jian, Li Kaishang, Pei Junfeng, et al. The effect of pre-strain on tensile behaviour of 316L austenitic stainless steel[J]. Materials Science and Technology, 2018,34(5):547-560. doi: 10.1080/02670836.2017.1421735
    [8] Zulfi F R, Korda A A. Effect of pre-strain on mechanical properties and deformation induced transformation of 304 stainless steel[C]. Journal of Physics: Conference Series. IOP Publishing, 2016, 739(1): 012039.
    [9] Saravanan K, Manikandan P, Jalaja K, et al. Effect of uniaxial pre-strain on tensile, work hardening, fracture toughness, and fatigue crack growth rate of titanium alloy Ti–6Al–4V[J]. Metallurgical and Materials Transactions A, 2023,54(9):3603-3619. doi: 10.1007/s11661-023-07117-6
    [10] Hu Hanjiang, Zhao Aimin, Yin Zhukai, et al. The effect of pre strain on the mechanical properties and hardening behavior of TRIP steel[J]. Journal of Materials Heat Treatment, 2016,37(5):128-132. (胡汉江, 赵爱民, 印珠凯, 等. 预应变对TRIP钢力学性能及硬化行为的影响[J]. 材料热处理学报, 2016,37(5):128-132.

    Hu Hanjiang, Zhao Aimin, Yin Zhukai, et al. The effect of pre strain on the mechanical properties and hardening behavior of TRIP steel[J]. Journal of Materials Heat Treatment, 2016, 37(5): 128-132.
    [11] Xue Zhichao, Peng Jian, Wang Linhai, et al. Comparative study on the effect of strain strengthening on the mechanical properties of S30403 and S30408 stainless steel[J]. Hot Working Process, 2022,51(6):26-31. (薛智超, 彭剑, 汪林海, 等. 应变强化对S30403与S30408不锈钢力学性能影响的对比研究[J]. 热加工工艺, 2022,51(6):26-31.

    Xue Zhichao, Peng Jian, Wang Linhai, et al. Comparative study on the effect of strain strengthening on the mechanical properties of S30403 and S30408 stainless steel[J]. Hot Working Process, 2022, 51(6): 26-31.
    [12] Peng Jian, Li Kaishang, Dai Qiao. Mechanical properties of pre-strained austenitic stainless steel from the view of energy density[J]. Results in Physics, 2018,10:187-193. doi: 10.1016/j.rinp.2018.05.034
    [13] Zhao Qing, Chang Le, Zhou Changyu, et al. The effect of pre strain on the tensile mechanical properties of industrial pure titanium TA2 welded joints[J]. Iron Steel Vanadium Titanium, 2023,44(3):68-74. (赵青, 常乐, 周昌玉, 等. 预应变对工业纯钛TA2焊接接头拉伸力学性能的影响[J]. 钢铁钒钛, 2023,44(3):68-74. doi: 10.7513/j.issn.1004-7638.2023.03.010

    Zhao Qing, Chang Le, Zhou Changyu, et al. The effect of pre strain on the tensile mechanical properties of industrial pure titanium TA2 welded joints[J]. Iron Steel Vanadium Titanium, 2023, 44(3): 68-74. doi: 10.7513/j.issn.1004-7638.2023.03.010
    [14] Gao Huilin. Analysis and review of bending strength ratio of pipeline steel[J]. Welded Pipe, 2010,33(6):10-14. (高惠临. 管线钢屈强比分析与评述[J]. 焊管, 2010,33(6):10-14. doi: 10.3969/j.issn.1001-3938.2010.06.002

    Gao Huilin. Analysis and review of bending strength ratio of pipeline steel[J]. Welded Pipe, 2010, 33(6): 10-14. doi: 10.3969/j.issn.1001-3938.2010.06.002
    [15] Gao Yi, Peng Jian, Dai Qiao, et al. The effect of strain strengthening on the fatigue behavior of 022Cr17Ni12Mo2 stainless steel[J]. Journal of Central South University (Natural Science Edition), 2020,51(1):23-32. (高毅, 彭剑, 代巧, 等. 应变强化对022Cr17Ni12Mo2不锈钢疲劳行为的影响[J]. 中南大学学报(自然科学版), 2020,51(1):23-32.

    Gao Yi, Peng Jian, Dai Qiao, et al. The effect of strain strengthening on the fatigue behavior of 022Cr17Ni12Mo2 stainless steel[J]. Journal of Central South University (Natural Science Edition), 2020, 51(1): 23-32.
    [16] Jin Fengnian, Jiang Meirong, Gao Xiaoling. Method for defining damage variables based on energy dissipation[J]. Journal of Rock Mechanics and Engineering, 2004(12):1976-1980. (金丰年, 蒋美蓉, 高小玲. 基于能量耗散定义损伤变量的方法[J]. 岩石力学与工程学报, 2004(12):1976-1980. doi: 10.3321/j.issn:1000-6915.2004.12.004

    Jin Fengnian, Jiang Meirong, Gao Xiaoling. Method for defining damage variables based on energy dissipation[J]. Journal of Rock Mechanics and Engineering, 2004(12): 1976-1980. doi: 10.3321/j.issn:1000-6915.2004.12.004
    [17] Wang Zhen. Research on mechanical properties and forming limit of aluminum lithium alloy sheets[D]. Tangshan: North China University of Technology, 2020. (王震. 铝锂合金板材的力学特性和成形极限研究[D]. 唐山: 华北理工大学, 2020.

    Wang Zhen. Research on mechanical properties and forming limit of aluminum lithium alloy sheets[D]. Tangshan: North China University of Technology, 2020.
    [18] Lei Yu. Study on plastic deformation behavior of typical high-strength steel under high strain rate of pre strain[D]. Wuhan: Wuhan University of Technology, 2018. (雷雨. 预应变高应变速率下典型高强钢的塑性变形行为研究[D]. 武汉: 武汉理工大学, 2018.

    Lei Yu. Study on plastic deformation behavior of typical high-strength steel under high strain rate of pre strain[D]. Wuhan: Wuhan University of Technology, 2018.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  269
  • HTML全文浏览量:  124
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-01
  • 网络出版日期:  2024-10-30
  • 刊出日期:  2024-10-30

目录

    /

    返回文章
    返回