中文核心期刊

SCOPUS 数据库收录期刊

中国科技核心期刊

美国《化学文摘》来源期刊

中国优秀冶金期刊

美国EBSCO数据库收录期刊

RCCSE中国核心学术期刊

美国《剑桥科学文摘》来源期刊

中国应用核心期刊(CACJ)

美国《乌利希期刊指南》收录期刊

中国学术期刊综合评价统计源刊

俄罗斯《文摘杂志》来源期刊

优秀中文科技期刊(西牛计划)

日本《科学技术文献数据库》(JST)收录刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti-45Al-8Nb-xHf合金组织性能与高温氧化行为

王威

王威. Ti-45Al-8Nb-xHf合金组织性能与高温氧化行为[J]. 钢铁钒钛, 2024, 45(5): 91-97, 115. doi: 10.7513/j.issn.1004-7638.2024.05.012
引用本文: 王威. Ti-45Al-8Nb-xHf合金组织性能与高温氧化行为[J]. 钢铁钒钛, 2024, 45(5): 91-97, 115. doi: 10.7513/j.issn.1004-7638.2024.05.012
Wang Wei. Microstructures, properties and high-temp oxidation behaviors of Ti-45Al-8Nb-xHf alloys[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 91-97, 115. doi: 10.7513/j.issn.1004-7638.2024.05.012
Citation: Wang Wei. Microstructures, properties and high-temp oxidation behaviors of Ti-45Al-8Nb-xHf alloys[J]. IRON STEEL VANADIUM TITANIUM, 2024, 45(5): 91-97, 115. doi: 10.7513/j.issn.1004-7638.2024.05.012

Ti-45Al-8Nb-xHf合金组织性能与高温氧化行为

doi: 10.7513/j.issn.1004-7638.2024.05.012
基金项目: 大学生创新创业训练计划项目(S202311802027);大学生创新创业训练计划项目(202211802109);黑龙江省高等教育学会2023年高等教育研究课题项目(23GJYBF076)。
详细信息
    作者简介:

    王威,1978年出生,男,黑龙江哈尔滨人,硕士,讲师,主要从事轻质合金材料制备与研究工作,E-mail:wwacme@126.com

  • 中图分类号: TF823,TG146.4

Microstructures, properties and high-temp oxidation behaviors of Ti-45Al-8Nb-xHf alloys

  • 摘要: 采用氩气保护真空感应熔炼工艺制备了Ti-45Al-8Nb-xHf (x=0.5、1.0、1.5、2) 合金,利用金相显微镜(OM)、扫描电镜(SEM)、能谱仪 (EDS)、X射线衍射仪(XRD)、万能试验机等研究了合金显微组织、压缩性能和抗氧化性能。结果表明,Hf元素含量的增加能够保持和细化合金显微组织,延缓高温下组织的转变,使合金抗压强度和压缩率分别提高到1923 MPa和25.7%,升幅30%以上,具有显著强化效应。合金在1000 ℃氧化时具有稳定TiO2+Nb2O5的氧化亚层,以平直界面氧化生长,氧化扩散层尺寸稳定小于85 μm,氧化质量呈线性变化,氧化速率曲线下降并最终达到稳定氧化阶段。适量Hf的添加有利于强化合金的力学性能和高温抗氧化性能。
  • 图  1  Ti-45Al-8Nb-$x $Hf合金铸态显微组织

    (a) Ti-45Al-8Nb-0.5Hf;(b) Ti-45Al-8Nb-1.0Hf;(c) Ti-45Al-8Nb-1.5Hf;(d) Ti-45Al-8Nb-2.0Hf

    Figure  1.  Microstructures of as-cast Ti-45Al-8Nb-$x $Hf alloys

    图  2  2.0% Hf合金晶界结构与不同Hf含量的XRD谱

    (a) 2.0% Hf合金晶界结构;(b) XRD分析

    Figure  2.  2.0% Hf alloy boundary microstructure and XRD pattern of xHf

    图  3  Ti-45A1-8Nb-$x $Hf合金1 000 ℃/25 h显微组织

    (a) Ti-45Al-8Nb-0.5Hf ;(b) Ti-45Al-8Nb-1.0Hf ;(c) Ti-45Al-8Nb-1.5Hf ;(d) Ti-45Al-8Nb-2.0Hf

    Figure  3.  Microstructures of Ti-45A1-8Nb-$x $Hf alloys at 1 000 ℃ for 25 h

    图  4  Ti-45Al-8Nb-$x $Hf合金室温压缩性能与硬度

    (a) 压缩应力-应变曲线;(b) 强度和压缩率;(c) 硬度

    Figure  4.  Room temperature compression properties and hardness of Ti-45Al-8Nb-$x $Hf alloys

    图  5  Ti-45Al-8Nb-xHf合金1000 ℃/75 h显微组织

    (a) Ti-45Al-8Nb-0.5Hf;(b) Ti-45Al-8Nb-1.0Hf;(c) Ti-45Al-8Nb-1.5Hf;(d) Ti-45Al-8Nb-2.0Hf

    Figure  5.  Microstructures of Ti-45Al-8Nb-xHf alloys at 1 000 ℃ for 75 h

    图  6  1000 ℃不同时间的Ti-45Al-8Nb-2.0Hf 合金氧化截面

    (a) 25 h,1 000 ℃;(b) 50 h,1 000 ℃;(a) 75 h,1 000 ℃

    Figure  6.  SEM images of Ti-45Al-8Nb-2.0Hf alloy with different oxidation times at 1000

    图  7  1000 ℃氧化Ti-45Al-8Nb-2.0Hf 合金氧化层截面EDS元素分布和氧化表面XRD

    (a) 氧化层截面EDS元素分布;(b) 氧化表面XRD

    Figure  7.  Elemental distribution of oxide layer cross section and XRD of oxidized surface of Ti-45Al-8Nb-2.0Hf alloy at 1 000

    图  8  不同Hf含量合金氧化曲线

    (a) 氧化动力曲线;(b) 氧化速率曲线;(c) 氧化拟合曲线

    Figure  8.  Oxidation curves of Ti-45Al-8Nb-xHf

    表  1  TiAl基多元合金铸锭化学成分

    Table  1.   Chemical composition of test alloys with different Hf contents %

    AlNbxHfTi
    45.08.00.5、1.0、1.5、2.0Bal.
    下载: 导出CSV

    表  2  合金1000 ℃氧化动力学参数

    Table  2.   Kinetic parameters of oxidation at 1000

    合金 n kn R2 t/h
    Ti-45Al-8Nb-0.5Hf 1.659 0.602 0.9963 0~100
    Ti-45Al-8Nb-1.0Hf 1.640 0.609 0.9772 0~100
    Ti-45Al-8Nb-1.5Hf 1.944 0.522 0.9947 0~100
    Ti-45Al-8Nb-2.0Hf 1.914 0.514 0.9985 0~100
    下载: 导出CSV
  • [1] Chen Yuyong, Wu Jingxi. Research and advances in processing, working, microstructure, properties and industrial application of β-solidifying TiAl alloy[J]. Iron Steel Vanadium Titaniun, 2021,42(6):1-16. (陈玉勇, 吴敬玺. β相凝固TiAl合金的制备、加工、组织、性能及工业应用研究进展[J]. 钢铁钒钛, 2021,42(6):1-16. doi: 10.7513/j.issn.1004-7638.2021.06.001

    Chen Yuyong, Wu Jingxi. Research and advances in processing, working, microstructure, properties and industrial application of β-solidifying TiAl alloy[J]. Iron Steel Vanadium Titaniun, 2021, 42(6): 1-16. doi: 10.7513/j.issn.1004-7638.2021.06.001
    [2] Zhu Dongdong, Yan Jiangfei, Jin Yuliang, et al. Pressure-induced excellent corrosion resistance of Ti-45Al-8Nb alloy[J]. Materials Letters, 2024,355:135446. doi: 10.1016/j.matlet.2023.135446
    [3] Chandran Anju, Ganesan Hariprasath, Cyron Christian J. Studying the effects of Nb on high-temperature deformation in TiAl alloys using atomistic simulations[J]. Materials & Design, 2024,237:112596.
    [4] Cao Jun, Sun Tielong, Guo Zhichao, et al. Simultaneous enhancement of strength and ductility in high Nb-TiAl by Si alloying[J]. Journal of Materials Science & Technology, 2024,177:128-132.
    [5] Guo Yingchao, Liang Yongfeng, Sun Dingbang, et al. Refinement and enhancement of high-Nb TiAl alloy via in-situ precipitation of Ti2AlC and TiB2 nanoparticles[J]. Journal of Materials Research and Technology, 2024,29:1052-1065. doi: 10.1016/j.jmrt.2024.01.122
    [6] Imayev V M, Ganeev A A, Trofimov D M, et al. Effect of Nb, Zr and Zr+Hf on the microstructure and mechanical properties of β-solidifying γ-TiAl alloys[J]. Materials Science and Engineering: A, 2021,817:141388. doi: 10.1016/j.msea.2021.141388
    [7] Jack Nelson, Mohammad Ghadyani, Claire Utton, et al. A study of the effects of Al, Cr, Hf, and Ti additions on the microstructure and oxidation of Nb-24Ti-18Si silicide based alloys[J]. Materials, 2018,11(9):1579-1579. doi: 10.3390/ma11091579
    [8] Guo Fangyu, Holec David, Wang Jianchuan, et al. Impact of V, Hf and Si on oxidation processes in Ti-Al-N: Insights from ab initio molecular dynamics[J]. Surface & Coatings Technology, 2020,381:125125.
    [9] Takeshi Nagase, Mitsuharu Todai, Wang Pan, et al. Design and development of (Ti, Zr, Hf)-Al based medium entropy alloys and high entropy alloys[J]. Materials Chemistry and Physics, 2022,276:12-15.
    [10] Xiang Henggao, Chen Yang, Qi Zhixiang, et al. Mechanical behavior of TiAl alloys[J]. Science China Technological Sciences, 2023,66(9):2457-2480. doi: 10.1007/s11431-022-2186-9
    [11] Huang Feng, Liang Sicheng, Hu Shangxing, et al. Status and progress in strengthening and toughening of TiAl alloy[J]. Specal Casting & Nonferrous Alloys, 2023,43(11):1441-1446. (黄锋, 梁思诚, 胡尚兴, 等. TiAl合金强韧化研究现状与进展[J]. 特种铸造及有色合金, 2023,43(11):1441-1446.

    Huang Feng, Liang Sicheng, Hu Shangxing, et al. Status and progress in strengthening and toughening of TiAl alloy[J]. Specal Casting & Nonferrous Alloys, 2023, 43(11): 1441-1446.
    [12] Wang Zite, Zheng Gong, Qi Zixiang, et al. Structures, microstructures, properties, and applications of TiAl alloys[J]. Chin Sci Bull, 2023,68:3259-3274. (王子特, 郑功, 祁志祥, 等. TiAl合金结构、组织、性能与应用[J]. 科学通报, 2023,68:3259-3274. doi: 10.1360/TB-2023-0037

    Wang Zite, Zheng Gong, Qi Zixiang, et al. Structures, microstructures, properties, and applications of TiAl alloys[J]. Chin Sci Bull, 2023, 68: 3259-3274. doi: 10.1360/TB-2023-0037
    [13] Feng Lihan, Li Bo, Li Qiang, et al. Enhancement of mechanical properties and oxidation resistance of TiAl alloy with addition of Nb and Mo alloying elements[J]. Materials Chemistry and Physics, 2024,316:129148. doi: 10.1016/j.matchemphys.2024.129148
    [14] Tian Shiwei, Zhang Tengkun, Zeng Shangwu, et al. Cyclic oxidation kinetics and thermal stress evolution of TiAl alloys at high temperature[J]. Metals, 2023,14(1):28. doi: 10.3390/met14010028
    [15] Liu Renci, Wang Peng, Cao Ruxin, et al. Influence of thermal exposure at 700 oC on the microstructure and morphology in the surface of β-solidifying γ-TiAl alloys[J]. Acta Metallurgica Sinica, 2022,58(8):1003-1012. (刘仁慈, 王鹏, 曹如心, 等. 700 ℃热暴露对 β 凝固 γ-TiAl合金表面组织及形貌的影响[J]. 金属学报, 2022,58(8):1003-1012.

    Liu Renci, Wang Peng, Cao Ruxin, et al. Influence of thermal exposure at 700 oC on the microstructure and morphology in the surface of β-solidifying γ-TiAl alloys[J]. Acta Metallurgica Sinica, 2022, 58(8): 1003-1012.
    [16] Birks Nell. Introduction to the high temperature oxidation of meatals[M]. 2nd edition. Cambridge University, 2009: 101-157.
    [17] Jin Xuchen, Ye Peihao, Ji Hongrui, et al. Oxidation resistance of powder metallurgy Ti–45Al–10Nb alloy at high temperature[J]. Int. J. Miner. Metall. Mater., 2022,29(12):2232-2240. doi: 10.1007/s12613-021-2320-4
    [18] Lai Xuping, Li Tianfang, Liu Rui, et al. Effect of Nb, Hf and Zr on oxidation resistance of γ-TiAl alloy[J]. Materials Reports, 2021, 35(Z1): 374-377. (赖旭平, 李天方, 刘瑞, 等. 元素Nb、Hf、Zr对γ-TiAl合金抗氧化性能的影响[J]. 材料导报, 2021, 35(Z1): 374-377.

    Lai Xuping, Li Tianfang, Liu Rui, et al. Effect of Nb, Hf and Zr on oxidation resistance of γ-TiAl alloy[J]. Materials Reports, 2021, 35(Z1): 374-377.
    [19] Wang Yanjing, Li Fei. Study on the high-temperature oxidation resistance of Ti-45Al-8(Nb, Hf, Y)-0.2B alloys[J]. Rare Metal Materials and Engineering, 2016,45(1):132-136. (王艳晶, 李菲. Ti-45Al-8(Nb, Hf, Y)-0.2B合金高温抗氧化性研究[J]. 稀有金属材料与工程, 2016,45(1):132-136.

    Wang Yanjing, Li Fei. Study on the high-temperature oxidation resistance of Ti-45Al-8(Nb, Hf, Y)-0.2B alloys[J]. Rare Metal Materials and Engineering, 2016, 45(1): 132-136.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  86
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-28
  • 网络出版日期:  2024-10-30
  • 刊出日期:  2024-10-30

目录

    /

    返回文章
    返回