Study on process mineralogy of a low grade refractory vanadium-titanium magnetite ore in Xinjiang
-
摘要: 为查清新疆某低品位难选钒钛磁铁矿的矿石性质及影响选矿指标的因素,开展了详细的工艺矿物学研究。结果表明:该矿石为辉长岩型低品位钒钛磁铁矿,矿石TiO2品位4.53%、TFe品位14.06%,其它有价元素含量低。钛磁铁矿为选矿回收铁元素的目的矿物,其中铁的分布率占总铁的47.892%,钛铁矿为选矿回收钛元素的目的矿物,其钛的分布率占总钛的60.881%。钛磁铁矿中常见固溶体分离矿物、蚀变矿物绿泥石及磷灰石等,粒度微细、嵌布复杂,磨矿难以与钛磁铁矿有效解离,易混入铁精矿影响铁精矿品质;钛铁矿中亦包含有微量蚀变矿物榍石及微细粒钛磁铁矿、磷灰石及硫化物等,混入钛精矿将导致钛精矿中Ca、Mg、Si、S、P等含量升高,影响精矿质量。同时,钛磁铁矿中的片晶状钛铁矿及钛铁晶石磨矿难以有效解离,在选铁环节易随钛磁铁矿进入铁精矿,这部分钛铁矿属于合理损失。Abstract: In order to find out the ore properties of a low-grade refractory vanadium-titanium magnetite ore and the factors affecting the beneficiation index, carried out detailed process mineralogy research. The research shows that the ore is a low-grade vanadium-titanium magnetite ore of gabbro type. The grade of TiO2 is 4.53 %, the grade of TFe is 14.06% and the content of other valuable elements is low. Titanomagnetite is the target mineral for beneficiation recovery of iron, in which the distribution rate of iron accounts for 47.892% of the total iron. Ilmenite is the target mineral for beneficiation recovery of titanium, and its distribution rate of titanium accounts for 60.881% of the total titanium. The solid solution separation minerals, altered minerals chlorite and apatite are common in titanomagnetite. The particle size is fine and the dissemination is complex. It is difficult to effectively dissociate from titanomagnetite by grinding, and it is easy to be mixed with iron concentrate to affect the quality of iron concentrate. The ilmenite also contains trace alteration minerals such as titanite and fine-grained titanomagnetite, apatite and sulfide. The addition of titanomagnetite to the ilmenite concentrate will lead to the increase of Ca, Mg, Si, S and P in the ilmenite concentrate, which will affect the quality of the concentrate. At the same time, the lamellar ilmenite and ilmenite in titanomagnetite are difficult to be effectively dissociated by grinding, and it is easy to enter the iron concentrate with titanomagnetite in the iron separation process. This part of ilmenite is a reasonable loss.
-
表 1 原矿化学多元素分析
Table 1. Chemical analysis results of the ore
% CaO MgO K2O TiO2 SiO2 Al2O3 TFe Na2O Cu ZnO Sc* P S V2O5 Ni Co 10.93 6.28 0.25 4.53 40.09 13.59 14.06 2.85 0.016 0.038 23.90 0.19 0.22 0.071 0.008 0.002 注:*处的单位为g/t。 表 2 矿石中矿物组成及含量
Table 2. Mineral composition and content of the ore
% 钛磁铁矿 钛铁矿 磁黄铁矿 黄铜矿 长石 辉石 橄榄石 闪石 绿泥石 磷灰石 黑云母 石英 榍石 绿帘石 方解石 其它 11.25 5.35 0.59 0.01 38.50 29.10 5.00 2.80 2.50 1.22 1.22 0.40 0.31 0.22 0.21 1.32 表 3 钛磁铁矿、钛铁矿原生粒度统计
Table 3. Statistics table of primary particle size of titanium magnetite and ilmenite
粒级/mm 分布率/% 钛磁铁矿 钛铁矿 +0.5 11.5 4.5 −0.5~+0.15 39.8 21.8 −0.15~+0.074 23.2 32.5 −0.074~+0.043 20.3 28.8 −0.043 5.2 12.4 表 4 钛磁铁矿、钛铁矿电子探针微区分析(平均)
Table 4. Element composition and content of titanium magnetite and ilmenite by EPMA(average)
% 矿物 Na2O CaO FeO Cr2O3 MgO K2O TiO2 P2O5 Al2O3 SiO2 V2O5 MnO 总计 钛磁铁矿 0.016 0.286 78.400 0.013 0.315 0.001 11.057 0.382 2.450 0.073 0.194 0.317 93.504 钛铁矿 0.008 0.018 44.592 0.005 1.906 0.001 50.874 0.007 0.062 0.038 0.203 0.886 98.599 表 5 磁黄铁矿电子探针微区分析元素含量(平均)
Table 5. Element composition and content of pyrrhotiteby EPMA (average)
% As S Fe Ni Cu Ti Zn Mo Co 总量 0.208 37.784 59.961 0 0.040 0.042 0.039 0.345 0.156 98.576 表 6 脉石矿物的电子探针微区分析元素含量(平均)
Table 6. Element composition and content of gangue mineral by EPMA (average)
% 脉石矿物 Na2O CaO FeO Cr2O3 MgO K2O TiO2 P2O5 Al2O3 SiO2 V2O5 MnO F 总计 长石 5.035 10.694 0.323 0.008 0.017 0.267 0.043 0.009 27.376 55.866 0.003 0.009 0 99.652 辉石 0.349 20.039 10.070 0.020 13.860 0.005 1.007 0.020 2.628 50.159 0.020 0.237 0 98.413 闪石 1.439 10.661 16.881 0.017 14.055 0.602 1.570 0.022 9.141 40.388 0.033 0.164 0 94.973 橄榄石 0.009 0.044 46.471 0.009 17.856 0.001 0.021 0.036 0.004 34.441 0.007 0.461 0 99.360 绿泥石 0.005 0.215 28.134 0.006 12.362 0.236 0.232 0.051 16.245 27.825 0.045 0.161 0 85.517 磷灰石 0.064 53.654 0.335 0.004 0.003 0.004 0.047 42.015 0.004 0.126 0.003 0 2.889 99.148 黑云母 0.347 13.464 0.012 15.795 8.839 3.655 0.003 15.093 35.831 0.033 0.347 0 0 93.253 表 7 原矿综合样中铁、钛的平衡配分
Table 7. Equilibrium partitioning of iron and titanium in raw ore comprehensive sample
% 矿物
名称矿物
含量TFe TiO2 矿物中
TFe
品位TFe金属量 TFe在各
矿物中的
分布率矿物中TiO2品位 TiO2金属量 TiO2在各
矿物中的
分布率钛磁铁矿 11.25 61.150 6.879 47.892 11.057 1.244 27.824 钛铁矿 5.35 34.780 1.861 12.954 50.874 2.722 60.881 磁黄铁矿 0.59 59.961 0.354 2.463 0.000 0.000 0.000 黄铜矿 0.01 30.590 0.003 0.021 0.000 0.000 0.000 辉 石 29.1 7.832 2.279 15.866 1.007 0.293 6.555 钠长石 38.5 0.251 0.097 0.673 0.043 0.017 0.370 橄榄石 5 36.144 1.807 12.581 0.021 0.001 0.023 绿泥石 2.5 21.880 0.547 3.808 0.232 0.006 0.130 角闪石 3 13.129 0.394 2.742 1.570 0.047 1.054 黑云母 1.22 10.470 0.128 0.889 3.655 0.045 0.997 磷灰石 0.88 0.261 0.002 0.016 0.047 0.000 0.009 榍 石 0.31 4.370 0.014 0.094 31.090 0.096 2.156 其它 2.29 0.000 0.000 0.000 0.000 0.000 0.000 合 计 100.00 14.364 100.000 4.471 100.000 注:原矿综合样TFe品位14.060,平衡系数(k) 14.4364 ÷14.060=102.16%; 原矿综合样TiO2品位4.53%,平衡系数(k)4.471÷4.530=98.69%。 -
[1] Peng Mingsheng, Liu Xiaowen, Liu Yu, et al. The main advances of process mineralogy in China in the last decade[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012,31(3):210-213. (彭明生, 刘晓文, 刘羽, 等. 工艺矿物学近十年的主要进展[J]. 矿物岩石地球化学通报, 2012,31(3):210-213. doi: 10.3969/j.issn.1007-2802.2012.03.003Peng Mingsheng, Liu Xiaowen, Liu Yu, et al. The main advances of process mineralogy in China in the last decade[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(3): 210-213. doi: 10.3969/j.issn.1007-2802.2012.03.003 [2] Zhu Fuxing, Jiao Yu, Li Liang, et al. The status and trends of mineral processing technology for vanadic titanomag[J]. Mining and Metallurgy, 2021(4):26-32. (朱福兴, 焦钰, 李亮, 等. 攀西钒钛磁铁矿的选矿技术现状及发展趋势[J]. 矿冶, 2021(4):26-32. doi: 10.3969/j.issn.1005-7854.2021.04.005Zhu Fuxing, Jiao Yu, Li Liang, et al. The status and trends of mineral processing technology for vanadic titanomag[J]. Mining and Metallurgy, 2021(4): 26-32. doi: 10.3969/j.issn.1005-7854.2021.04.005 [3] Chen Haibin, Zhou Zhenhua, Zhang Zuojin, et al. Research progress in the comprehensive recovery of vanadium-titanium magnetite[J]. Modern Mining, 2023(1):7-9. (陈海彬, 周振华, 张作金, 等. 钒钛磁铁矿综合回收研究进展[J]. 现代矿业, 2023(1):7-9. doi: 10.3969/j.issn.1674-6082.2023.01.002Chen Haibin, Zhou Zhenhua, Zhang Zuojin, et al. Research progress in the comprehensive recovery of vanadium-titanium magnetite[J]. Modern Mining, 2023(1): 7-9. doi: 10.3969/j.issn.1674-6082.2023.01.002 [4] Wang Yue, Wang Jing, Zhou Mangeng, et al. The important role of the process mineralogy in the level monitoring of multipurpose utilization of mineral resources[J]. China Mining Magazine, 2013,22(4):46-50. (王越, 王婧, 周满赓, 等. 工艺矿物学在矿产资源综合利用水平监测中的重要作用[J]. 中国矿业, 2013,22(4):46-50. doi: 10.3969/j.issn.1004-4051.2013.04.013Wang Yue, Wang Jing, Zhou Mangeng, et al. The important role of the process mineralogy in the level monitoring of multipurpose utilization of mineral resources[J]. China Mining Magazine, 2013, 22(4): 46-50. doi: 10.3969/j.issn.1004-4051.2013.04.013 [5] Wang Yue, Wang Jing, Li Xiaoyu, et al. Application of EPMA in the processing mineralogy study of a deep iron ore in Benxi, Liaoning province[J]. Multipurpose Utilization of Mineral Reaources, 2018(5):109-113. (王越, 王婧, 李潇雨, 等. 电子探针在本溪某深部铁矿石工艺矿物学研究中的应用[J]. 矿产综合利用, 2018(5):109-113. doi: 10.3969/j.issn.1000-6532.2018.05.024Wang Yue, Wang Jing, Li Xiaoyu, et al. Application of EPMA in the processing mineralogy study of a deep iron ore in Benxi, Liaoning province[J]. Multipurpose Utilization of Mineral Reaources, 2018(5): 109-113. doi: 10.3969/j.issn.1000-6532.2018.05.024 [6] Yang Yaohui, Hui Bo, Yan Shiqiang, et al. Overview of global vanadium-titanium magnetite resources and comprehensive utilization[J]. Multipurpose Utilization of Mineral Reaources, 2023(4):1-11. (杨耀辉, 惠博, 颜世强, 等. 全球钒钛磁铁矿资源概况与综合利用研究进展[J]. 矿产综合利用, 2023(4):1-11. doi: 10.3969/j.issn.1000-6532.2023.04.001Yang Yaohui, Hui Bo, Yan Shiqiang, et al. Overview of global vanadium-titanium magnetite resources and comprehensive utilization[J]. Multipurpose Utilization of Mineral Reaources, 2023(4): 1-11. doi: 10.3969/j.issn.1000-6532.2023.04.001 [7] Xiao Ying, Guan Chuan, Xu Xiaoxia. Determination method of iron and titanium phases for vanadium titanium magnetite[J]. Multipurpose Utilization of Mineral Resources, 2019(4):103-105. (肖颖, 管川, 徐晓霞. 钒钛磁铁矿铁钛物相联测分析方法[J]. 矿产综合利用, 2019(4):103-105. doi: 10.3969/j.issn.1000-6532.2019.04.022Xiao Ying, Guan Chuan, Xu Xiaoxia. Determination method of iron and titanium phases for vanadium titanium magnetite[J]. Multipurpose Utilization of Mineral Resources, 2019(4): 103-105. doi: 10.3969/j.issn.1000-6532.2019.04.022 [8] Yang Yaohui, Hui Bo, Yan Weiping, et al. Research on process mineralogy of fine ilmenite in Panxi area[J]. Multipurpose Utilization of Mineral Resources, 2020(3):131-135. (杨耀辉, 惠博, 严伟平, 等. 攀西微细粒钛铁矿工艺矿物学研究[J]. 矿产综合利用, 2020(3):131-135. doi: 10.3969/j.issn.1000-6532.2020.03.022Yang Yaohui, Hui Bo, Yan Weiping, et al. Research on process mineralogy of fine ilmenite in Panxi area[J]. Multipurpose Utilization of Mineral Resources, 2020(3): 131-135. doi: 10.3969/j.issn.1000-6532.2020.03.022 [9] Han Yuexin, Zhang Xiaolong, Gao Peng, et al. Development and prospect of iron ore processing technologies in China[J]. Metal Mine, 2024(2):1-24. (韩跃新, 张小龙, 高鹏, 等. 中国铁矿石选矿技术发展与展望[J]. 金属矿山, 2024(2):1-24.Han Yuexin, Zhang Xiaolong, Gao Peng, et al. Development and prospect of iron ore processing technologies in China[J]. Metal Mine, 2024(2): 1-24. [10] Hong Qiuyang, Li Meirong, Li Bo, et al. Process mineralogical characteristics of a foreign refractory vanadium-titanium iron ore[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 48-55. (洪秋阳, 李美荣, 李波, 国外某难选冶钒钛铁矿石工艺矿物学特征 [J]. 矿产综合利用, 2020(6): 48-55.Hong Qiuyang, Li Meirong, Li Bo, et al. Process mineralogical characteristics of a foreign refractory vanadium-titanium iron ore[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 48-55. [11] Chen Chao, Zhang Yushu, Li Xiaoyu, et al. Research progress in titanium-magnetite beneficiation technology[J]. Multipurpose Utilization of Mineral Resources, 2021(3):99-105. (陈超, 张裕书, 李潇雨, 等. 钛磁铁矿选矿技术研究进展[J]. 矿产综合利用, 2021(3):99-105.Chen Chao, Zhang Yushu, Li Xiaoyu, et al. Research progress in titanium-magnetite beneficiation technology[J]. Multipurpose Utilization of Mineral Resources, 2021(3): 99-105. [12] Jia Muxin. Process mineralogy progress and its trend abroad[J]. Mining & Metallurgy, 2007, 16(2): 95-99. (贾木欣. 国外工艺矿物学进展及发展趋势[J]. 矿冶, 2007, 16(2): 95-99.Jia Muxin. Process mineralogy progress and its trend abroad[J]. Mining & Metallurgy, 2007, 16(2): 95-99. [13] Lu Xianzhi, Lu Peiyao, Chen Yingjie, et al. Study on process mineralogy of ilmenite in Yunnan province[J]. Multipurpose Utilization of Mineral Resources, 2022(2):206-210. (陆显志, 路沛瑶, 陈英杰, 等. 云南某钛铁矿的工艺矿物学研究[J]. 矿产综合利用, 2022(2):206-210. doi: 10.3969/j.issn.1000-6532.2022.02.036Lu Xianzhi, Lu Peiyao, Chen Yingjie, et al. Study on process mineralogy of ilmenite in Yunnan province[J]. Multipurpose Utilization of Mineral Resources, 2022(2): 206-210. doi: 10.3969/j.issn.1000-6532.2022.02.036 [14] Ding Quanli. The innovative demonstration project for the enhanced recovery of ultra-fine titanium iron ore has been put into operation, raising the recovery rate of titanium resources in China to more than 40% [N/OL]. China Natural Resources News, 2023-09-19. https://www.mnr.gov.cn/dt/kc/202309/t20230919_2800629.html (丁全利. 超微细粒级钛铁矿强化回收创新示范工程生产线投运, 我国钛资源回收率提至40%[N/OL]. 中国自然资源报, 2023-09-19. https://www.mnr.gov.cn/dt/kc/202309/t20230919_2800629.html.Ding Quanli. The innovative demonstration project for the enhanced recovery of ultra-fine titanium iron ore has been put into operation, raising the recovery rate of titanium resources in China to more than 40% [N/OL]. China Natural Resources News, 2023-09-19. https://www.mnr.gov.cn/dt/kc/202309/t20230919_2800629.html [15] Feng Youquan. Discussion on comprehensive development and utilization scheme of an ultra-lean vanadium-titanium magnetite in Xinjiang[J]. Mining Engineering, 2020(2):36-38. (冯友全. 新疆某超贫钒钛磁铁矿综合开发利用方案探讨[J]. 矿业工程, 2020(2):36-38.Feng Youquan. Discussion on comprehensive development and utilization scheme of an ultra-lean vanadium-titanium magnetite in Xinjiang[J]. Mining Engineering, 2020(2): 36-38. [16] Li Houmin, Wang Ruijiang, Xiao Keyan, et al. Characteristics and current utilization tatus of ultra-low grade magnetite resource and suggestion on its exploration and development[J]. Geological Bulletin of China, 2009, 28 (1): 85-90. (李厚民 , 王瑞江 , 肖克炎, 等. 中国超贫磁铁矿资源的特征、利用现状及勘查开发建议—以河北和辽宁的超贫磁铁矿资源为例[J]. 地质通报, 2009 , 28(1): 85-90.Li Houmin, Wang Ruijiang, Xiao Keyan, et al. Characteristics and current utilization tatus of ultra-low grade magnetite resource and suggestion on its exploration and development[J]. Geological Bulletin of China, 2009, 28 (1): 85-90. [17] Wang Jinggong, Li Zhaohui, Guo Xiuping. Comprehensive utilization of ultra-low-grade magnetite ore resources in Hebei province[J]. Conservation and Utilization of Mineral Resources, 2012(2):14-15. (王敬功, 李朝晖, 郭秀平. 河北省超贫磁铁矿资源的综合利用[J]. 矿产保护与利用, 2012(2):14-15. doi: 10.3969/j.issn.1001-0076.2012.02.004Wang Jinggong, Li Zhaohui, Guo Xiuping. Comprehensive utilization of ultra-low-grade magnetite ore resources in Hebei province[J]. Conservation and Utilization of Mineral Resources, 2012(2): 14-15. doi: 10.3969/j.issn.1001-0076.2012.02.004 [18] Wang Xun, Han Yuexin, Li Yanjun, et al. Research status on comprehensive development and utilization of vanadium-titanium magnetite[J]. Metal Mine, 2019(6):33-37. (王勋, 韩跃新, 李艳军, 等. 钒钛磁铁矿综合利用研究现状[J]. 金属矿山, 2019(6):33-37.Wang Xun, Han Yuexin, Li Yanjun, et al. Research status on comprehensive development and utilization of vanadium-titanium magnetite[J]. Metal Mine, 2019(6): 33-37. [19] Ma Jianming, Chen Congxi. A new type of iron ore resources development and utilization of ultra-poor vanadium titanomagnetite in Chengde[J]. China Metal Bulletin, 2007(20):31-32. (马建明, 陈从喜. 我国铁矿资源开发利用的新类型—承德超贫钒钛磁铁矿[J]. 中国金属通报, 2007(20):31-32.Ma Jianming, Chen Congxi. A new type of iron ore resources development and utilization of ultra-poor vanadium titanomagnetite in Chengde[J]. China Metal Bulletin, 2007(20): 31-32. [20] Zhang Qingshan. Development and utilization of vanadium titano-magnetite ore in Xinjiang[J]. Xinjiang Iron and Stell, 2020(3):54-57. (张清山. 浅谈新疆钒钛磁铁矿开发利用思路[J]. 新疆钢铁, 2020(3):54-57. doi: 10.3969/j.issn.1672-4224.2020.03.019Zhang Qingshan. Development and utilization of vanadium titano-magnetite ore in Xinjiang[J]. Xinjiang Iron and Stell, 2020(3): 54-57. doi: 10.3969/j.issn.1672-4224.2020.03.019 [21] Ma Donglin, Yang Yaohui, Deng Jian. Study on the comprehensive recovery of Fe and Ti from a low grade vanadium- titanium magnetite in Xinjiang[J]. Iron Steel Vanadium Titanium, 2023,44(5):15-22. (马东林, 杨耀辉, 邓建, 等. 新疆某低品位钒钛磁铁矿铁、钛综合回收试验研究[J]. 钢铁钒钛, 2023,44(5):15-22. doi: 10.7513/j.issn.1004-7638.2023.05.003Ma Donglin, Yang Yaohui, Deng Jian. Study on the comprehensive recovery of Fe and Ti from a low grade vanadium- titanium magnetite in Xinjiang[J]. Iron Steel Vanadium Titanium, 2023, 44(5): 15-22. doi: 10.7513/j.issn.1004-7638.2023.05.003 -
下载: